| Overall Statistics |
|
Total Orders 295 Average Win 0.88% Average Loss -0.49% Compounding Annual Return 8.396% Drawdown 14.000% Expectancy 0.846 Start Equity 100000 End Equity 180625.23 Net Profit 80.625% Sharpe Ratio 0.409 Sortino Ratio 0.394 Probabilistic Sharpe Ratio 20.078% Loss Rate 34% Win Rate 66% Profit-Loss Ratio 1.80 Alpha 0.024 Beta 0.128 Annual Standard Deviation 0.08 Annual Variance 0.006 Information Ratio -0.229 Tracking Error 0.164 Treynor Ratio 0.255 Total Fees $676.86 Estimated Strategy Capacity $8200000.00 Lowest Capacity Asset DBC TFVSB03UY0DH Portfolio Turnover 2.20% |
# The investment universe consists of the Offensive: SPY, QQQ, IWM, VGK, EWJ, VWO, VNQ, DBC, GLD, TLT, HYG, LQD; Protective: SPY, VWO, VEA, BND; and the Defensive: TIP, DBC, BIL, IEF,
# TLT, LQD, BND. The trading algorithm is: on the close of the last trading day of each month t.
# 1. Calculate a relative momentum score for each of assets in the offensive and defensive universe, where relative momentum at t equals pt / SMA(12) – 1. Note that the slow SMA(12)
# trend is calculated based on month-end values with maximum lag 12, so as the average over pt. pt-12 representing the most recent 13 month-end prices, including today.
# 2. Select the Top3 from a defensive universe with both relative and absolute SMA(12) momentum, if at least one of the assets in the protective (or canary) universe show negative
# absolute momentum, where absolute momentum at t is based on fast momentum 13612W, which is the weighted average of returns over 1, 3, 6 and 12 months with weights 12, 4, 2, 1, resp.
# Otherwise, select the offensive universe.
# 3. Depending on step 2, select the Top 6 assets with the highest relative momentum value of the offensive or the defensive universe and allocate 1/(Top 6) of the portfolio to each.
# Replace the ‘bad’ defensive selections (assets with momentum less than BIL) by BIL. Hold positions until the final trading day of the following month. Re-balance the entire portfolio
# monthly, regardless of whether there is a change in position. This implies that the switching is 100% to defensive when at least one of the Protective (or ‘canary’) universe assets
# shows negative (or ‘bad’) absolute momentum, no switching (so 0% defensive) with no canary assets ‘bad’.
# region imports
from AlgorithmImports import *
import pandas as pd
import numpy as np
from typing import List, Dict
from pandas.core.frame import DataFrame
# endregion
class BoldAssetAllocation(QCAlgorithm):
def Initialize(self):
self.SetCash(100000)
# self.SetStartDate(2008, 1, 1)
# self.SetStartDate(2023, 4, 1) # Set Start Date
# self.SetEndDate(2023, 6, 1) # Set End Date
self.SetStartDate(2018, 1, 1) # Set Start Date
self.SetEndDate(2025, 4, 30) # Set End Date
# all assets
self.offensive:List[str] = [
"SPY", "QQQ",
"IWM", "VGK",
"EWJ", "VWO",
"VNQ", "DBC",
"GLD", "TLT",
"HYG", "LQD",
]
# Max ETF Fees if chose the 6 most expensive comes to 0.44%
# SPY: .09%
# QQQ: .20% 5
# IWM: .19% 6
# VGK: .11%
# EWJ: .50% 2
# VWO: .08%
# VNQ: .12%
# DBC: .85% 1
# GLD: .40% 4
# TLT: .15%
# HYG: .48% 3
# LQD: .14%
self.protective:List[str] = ["SPY", "VWO", "VEA", "BND"]
self.defensive:List[str] = ["TIP", "DBC", "BIL", "IEF", "TLT", "LQD", "BND"]
self.safe:str = "BIL"
# Max ETF Fees if chose the 3 most expensive comes to 0.20%
# TIP: .19% 2
# DBC: .85% 1
# BIL: .1354%
# IEF: .15% 3
# TLT: .15%
# LQD: .14%
# BND: .03%
# strategy parameters (our implementation)
self.prds:List[int] = [1, 3, 6, 12] # fast momentum settings
self.prdweights:np.ndarray = np.array([12, 4, 2, 1]) # momentum weights
self.LO, self.LP, self.LD, self.B, self.TO, self.TD = [
len(self.offensive),
len(self.protective),
len(self.defensive),
1,
6,
3,
] # number of offensive, protective, defensive assets, threshold for "bad" assets, select top n of offensive and defensive assets
self.hprd:int = (max(self.prds + [self.LO, self.LD]) * 21 + 50) # momentum periods calculation
# repeat safe asset so it can be selected multiple times
self.all_defensive:List[str] = self.defensive + [self.safe] * max(
0, self.TD - sum([1 * (e == self.safe) for e in self.defensive])
)
self.equities:List[str] = list(
dict.fromkeys(self.protective + self.offensive + self.all_defensive)
)
leverage:int = 3
for equity in self.equities:
data:Equity = self.AddEquity(equity, Resolution.Daily)
data.SetLeverage(leverage)
self.recent_month:int = -1
self.settings.daily_precise_end_time = False
def OnData(self, data:Slice) -> None:
if self.IsWarmingUp:
return
# monthly rebalance
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# get price data and trading weights
h:DataFrame = self.History(self.equities, self.hprd, Resolution.Daily)["close"].unstack(level=0)
weights:pd.Series = self.trade_weights(h)
# # Used to display the start and end date of historical price dataframe
# self.Debug("Date 1: " + str(h.iloc[:1].index))
# self.Debug("Date 2: " + str(h.iloc[-1:].index))
# trade
self.SetHoldings([PortfolioTarget(x, y) for x, y in zip(weights.index, weights.values) if x in data and data[x]])
def trade_weights(self, hist:DataFrame) -> pd.Series:
# initialize weights series
weights:pd.Series = pd.Series(0, index=hist.columns)
# end of month values
h_eom:DataFrame = hist.loc[hist.groupby(hist.index.to_period("M")).apply(lambda x: x.index.max())].iloc[:-1, :]
# Check if protective universe is triggered.
# build dataframe of momentum values
mom:DataFrame = (h_eom.iloc[-1, :].div(h_eom.iloc[[-p - 1 for p in self.prds], :], axis=0) - 1)
mom = mom.loc[:, self.protective].T
# determine number of protective securities with negative weighted momentum
n_protective:float = np.sum(np.sum(mom.values * self.prdweights, axis=1) < 0)
# % equity offensive
pct_in:float = 1 - min(1, n_protective / self.B)
# Get weights for offensive and defensive universes.
# determine weights of offensive universe
if pct_in > 0:
# price / SMA
mom_in = h_eom.iloc[-1, :].div(h_eom.iloc[[-t for t in range(1, self.LO + 1)]].mean(axis=0), axis=0)
mom_in = mom_in.loc[self.offensive].sort_values(ascending=False)
# equal weightings to top relative momentum securities
in_weights = pd.Series(pct_in / self.TO, index=mom_in.index[:self.TO])
weights = pd.concat([weights, in_weights])
# determine weights of defensive universe
if pct_in < 1:
# price / SMA
mom_out = h_eom.iloc[-1, :].div(h_eom.iloc[[-t for t in range(1, self.LD + 1)]].mean(axis=0), axis=0)
mom_out = mom_out.loc[self.all_defensive].sort_values(ascending=False)
# equal weightings to top relative momentum securities
out_weights = pd.Series((1 - pct_in) / self.TD, index=mom_out.index[:self.TD])
weights = pd.concat([weights, out_weights])
weights:pd.Series = weights.groupby(weights.index).sum()
return weights