| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.639 Tracking Error 0.127 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports
from AlgorithmImports import *
# endregion
class DEBUG04(QCAlgorithm):
def initialize(self):
self.set_start_date(2025, 1, 1) # Set Start Date
self.set_cash(100000) # Set Strategy Cash
self.nvda = self.add_equity("NVDA", Resolution.DAILY).symbol
self.nvda_ema = self.ema(self.nvda, 100, 0.02, Resolution.DAILY)
self.nvda_sma = self.sma(self.nvda, 100, Resolution.DAILY)
self.meta = self.add_equity("META", Resolution.DAILY).symbol
self.meta_ema = self.ema(self.meta, 100, 0.02, Resolution.DAILY)
self.meta_sma = self.sma(self.meta, 100, Resolution.DAILY)
self.set_warmup(600, Resolution.DAILY)
def on_data(self, data: Slice):
if not self.nvda_ema.is_ready or not self.nvda_sma.is_ready or not self.meta_ema.is_ready or not self.meta_sma.is_ready:
return
else:
if self.Time.year == 2025:
self.Log(f"{self.Time} [NVDA] ema_100: {round(self.nvda_ema.current.value,2)} / sma_100: {round(self.nvda_sma.current.value,2)}")
self.Log(f"{self.Time} [META] ema_100: {round(self.meta_ema.current.value,2)} / sma_100: {round(self.meta_sma.current.value,2)}")