| Overall Statistics |
|
Total Trades 9 Average Win 0.26% Average Loss -0.28% Compounding Annual Return 153.301% Drawdown 1.100% Expectancy -0.515 Net Profit 1.195% Sharpe Ratio 18.598 Probabilistic Sharpe Ratio 84.659% Loss Rate 75% Win Rate 25% Profit-Loss Ratio 0.94 Alpha 0.986 Beta 0.449 Annual Standard Deviation 0.101 Annual Variance 0.01 Information Ratio -0.865 Tracking Error 0.123 Treynor Ratio 4.179 Total Fees $30.95 Estimated Strategy Capacity $24000000.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Parameters import *
### <summary>
### Demonstration of the parameter system of QuantConnect. Using parameters you can pass the values required into C# algorithms for optimization.
### </summary>
### <meta name="tag" content="optimization" />
### <meta name="tag" content="using quantconnect" />
class ParameterizedAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2013, 10, 7) #Set Start Date
self.SetEndDate(2013, 10, 11) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY")
# Receive parameters from the Job
ema_fast = self.GetParameter("ema-fast")
ema_slow = self.GetParameter("ema-slow")
# The values 100 and 200 are just default values that only used if the parameters do not exist
fast_period = 100 if ema_fast is None else int(ema_fast)
slow_period = 200 if ema_slow is None else int(ema_slow)
self.fast = self.EMA("SPY", fast_period)
self.slow = self.EMA("SPY", slow_period)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# wait for our indicators to ready
if not self.fast.IsReady or not self.slow.IsReady:
return
fast = self.fast.Current.Value
slow = self.slow.Current.Value
if fast > slow * 1.001:
self.SetHoldings("SPY", 1)
elif fast < slow * 0.999:
self.Liquidate("SPY")