| Overall Statistics |
|
Total Orders 1710 Average Win 3.29% Average Loss -2.41% Compounding Annual Return 301.463% Drawdown 42.900% Expectancy 0.122 Start Equity 100000 End Equity 616560.8 Net Profit 516.561% Sharpe Ratio 3.118 Sortino Ratio 3.446 Probabilistic Sharpe Ratio 75.341% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 1.36 Alpha 2.488 Beta 3.928 Annual Standard Deviation 0.945 Annual Variance 0.893 Information Ratio 3.131 Tracking Error 0.904 Treynor Ratio 0.75 Total Fees $44264.20 Estimated Strategy Capacity $63000000.00 Lowest Capacity Asset NQ YJHOAMPYKQGX Portfolio Turnover 5374.72% |
# region imports
from AlgorithmImports import *
from datetime import timedelta
import numpy as np
from sklearn.linear_model import LinearRegression
# endregion
class VolumeProfileAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2023, 1, 1)
self.set_end_date(2024, 8, 1)
self.set_cash(100000)
# Set the symbol of the asset we want to trade
future = self.add_future(
Futures.Indices.NASDAQ_100_E_MINI, Resolution.MINUTE
)
future.set_filter(timedelta(0), timedelta(182))
self.future_symbol = future.symbol
self.futures_contract = None
self.contract_count = 0
# Volume Profile indicator settings
self.profile_period = 120 # 2 hours
self.value_area_percentage = 0.4
self.volume_profile = VolumeProfile(
"Volume Profile", self.profile_period, self.value_area_percentage
)
# Rolling window to store past prices
self.past_prices_period = 20
self.past_prices = RollingWindow[TradeBar](self.past_prices_period)
# Consolidate data
self.consolidate(
self.future_symbol, timedelta(minutes=1), self.on_data_consolidated
)
self.register_indicator(
self.future_symbol, self.volume_profile, timedelta(hours=2)
)
# Setting stoploss
self.stop_loss_len = 100
self.stop_loss_indicator = self.min(
self.future_symbol, self.stop_loss_len, Resolution.MINUTE
)
self.stop_loss_price = 0
# Warm up period
self.set_warm_up(timedelta(days=2))
# Free portfolio setting
self.settings.free_portfolio_value = 0.3
def on_data_consolidated(self, data: Slice):
# Store the past prices of the future contract
self.past_prices.add(data)
def on_data(self, data: Slice):
# Check if the strategy warm up period is over and indicators are ready
if self.is_warming_up or not self.volume_profile.is_ready or not self.past_prices.is_ready or not self.stop_loss_indicator.is_ready:
# self.log(
# f"Warming up: {self.is_warming_up}, Volume Profile Ready: {self.volume_profile.is_ready}, Past Prices Ready: {self.past_prices.is_ready}")
return
current_price = self.past_prices[0].close
# Verify entry criteria to invest
if not self.portfolio.invested:
self.log("Not invested! Finding futures contract...")
# Find the future contract with the max open interest above 1000
# This for-loop works because we're only checking one futures security
for chain in data.future_chains:
popular_contracts = [
contract for contract in chain.value if contract.open_interest > 1000
]
if len(popular_contracts) == 0:
continue
self.futures_contract = max(
popular_contracts, key=lambda k: k.open_interest)
self.log(f"Futures Contract Symbol: {self.futures_contract.symbol}")
# Check if price is moving towards the value area based on the direction of the slope
# and the volume profile
past_prices = [x.close for x in self.past_prices if x is not None]
slope = self.compute_slope(past_prices)
# Log the indicators and price
self.log(
f"""
Current Price: {current_price}
Slope: {slope}
Value Area High: {self.volume_profile.value_area_high}
Value Area Low: {self.volume_profile.value_area_low}
"""
)
if (self.volume_profile.value_area_low <= current_price <= self.volume_profile.value_area_high):
# Long condition
if slope < -0.5:
self.log(
"Price is moving towards the value area! Invest!")
self.set_holdings(self.futures_contract.symbol, 1)
self.stop_loss_price = self.stop_loss_indicator.current.value
self.log(
f"Current price: {current_price}, stop order price: {self.stop_loss_price}")
else:
self.log("Price isn't in value area, keep waiting...")
# Exit or update exit stop loss price
else:
# Exit check
if current_price < self.stop_loss_price:
self.log(f"Stop loss at {current_price}")
self.liquidate(self.futures_contract.symbol)
# Check if you should update stop loss price
elif self.past_prices[0].close > self.past_prices[1].close:
self.stop_loss_price = self.stop_loss_price + \
(self.past_prices[0].close - self.past_prices[1].close)
self.log(
f"Updating stop loss order of {self.stop_loss_price}!")
# Plotting the data
# self.plot("VolumeProfile","vp", self.volume_profile.current.value)
# self.plot("VolumeProfile","profile_high", self.volume_profile.profile_high)
# self.plot("VolumeProfile","profile_low", self.volume_profile.profile_low)
# self.plot("VolumeProfile","poc_price", self.volume_profile.poc_price)
# self.plot("VolumeProfile","poc_volume", self.volume_profile.poc_volume)
# self.plot("VolumeProfile","value_area_volume", self.volume_profile.value_area_volume)
# self.plot("VolumeProfile","value_area_high", self.volume_profile.value_area_high)
# self.plot("VolumeProfile","value_area_low", self.volume_profile.value_area_low)
# self.plot("VolumeProfile","current_price", self.past_prices[0].close)
def compute_slope(self, prices: list) -> float:
# Convert list to numpy array and reshape to 2D for sklearn
prices_array = np.array(prices).reshape(-1, 1)
# Create an array of indices representing time
times = np.array(range(len(prices))).reshape(-1, 1)
# Fit a linear regression model
model = LinearRegression().fit(times, prices_array)
# Return the slope of the regression line
return model.coef_[0][0]