| Overall Statistics |
|
Total Trades 5751 Average Win 0.01% Average Loss 0.00% Compounding Annual Return 14.041% Drawdown 21.000% Expectancy 2.754 Net Profit 52.423% Sharpe Ratio 0.828 Loss Rate 14% Win Rate 86% Profit-Loss Ratio 3.37 Alpha 0.33 Beta -15.099 Annual Standard Deviation 0.128 Annual Variance 0.016 Information Ratio 0.712 Tracking Error 0.128 Treynor Ratio -0.007 Total Fees $6264.95 |
# https://quantpedia.com/Screener/Details/26
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
# ----------------------------------------------------------------
# To do
# ----------------------------------------------------------------
# x Rebalance Monthly
# x Change weighting of positions to equal weights
# x Plot development of Breakpoints over time
# - Narrow down to single asset (for testing purposes)
# - Add calculation of target price
# - Overlay covered call strategy linking strikes with breakpoints
# - Overlay LT & ST replication (short put & long call)
# - Extend to multiple tickers
# - Extend to short leg
# ----------------------------------------------------------------
# Some Notes
# ----------------------------------------------------------------
# self.lowercase variables are variables defined by oneself
# self.Uperrcase variables reference QC API
class BooktoMarketAnomaly(QCAlgorithm):
def Initialize(self):
self.Debug('______________________________________________________________________________________________________________________________')
self.Debug('Initializing Backtest')
self.SetStartDate(2016, 1, 1)
self.SetEndDate(2019, 3, 15)
self.SetCash(1000000)
# Granularity - Daily Resolution
self.UniverseSettings.Resolution = Resolution.Daily
self.sorted_by_bm = None
self.current = []
self.monthly_rebalance = False
# Universe + Settings
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# Benchmark
self.SetBenchmark("SPY")
self.AddEquity("SPY", Resolution.Daily)
# Schedule functions
# Trigger an event every day a specific symbol is trading --> here monthly
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), self.rebalance)
# Plotting
# Chart - Master Container for the Chart:
breakpPlot = Chart('Fundamentals')
breakpPlot.AddSeries(Series('Breakpoint-Min', SeriesType.Line))
breakpPlot.AddSeries(Series('Breakpoint-Max', SeriesType.Line))
self.AddChart(breakpPlot)
def CoarseSelectionFunction(self, coarse):
if self.monthly_rebalance:
# drop stocks which have no fundamental data (or have low price)
self.filtered_coarse = [x.Symbol for x in coarse if (x.HasFundamentalData)]
return self.filtered_coarse
else:
self.Log('CoarseSelectionFunction went into else...')
return []
def FineSelectionFunction(self, fine):
if self.monthly_rebalance:
# Filter stocks with positive PB Ratio
fine = [x for x in fine if (x.ValuationRatios.PBRatio > 0)]
# Calculate the market cap and add the "MarketCap" property to fine universe object
for i in fine:
i.MarketCap = float(i.EarningReports.BasicAverageShares.ThreeMonths * (i.EarningReports.BasicEPS.TwelveMonths*i.ValuationRatios.PERatio))
# Syntax : sorted(iterable, key, reverse) --> reverse means from highest (expensive) to lowest (cheap)
top_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)[:int(len(fine)*0.2)]
# sorted stocks in the top market-cap list by book-to-market ratio -> cheapest first
top_bm = sorted(top_market_cap, key = lambda x: 1 / x.ValuationRatios.PBRatio, reverse=True)[:int(len(top_market_cap)*0.2)]
self.sorted_by_bm = [i.Symbol for i in top_bm]
top_bm_sorted = sorted(top_bm, key = lambda x: x.ValuationRatios.PBRatio, reverse=True)
top_bm_tickers = [i.Symbol for i in top_bm_sorted]
top_bm_ratios = [i.ValuationRatios.PBRatio for i in top_bm_sorted]
self.ticker_PB = np.column_stack((top_bm_tickers, top_bm_ratios))
self.Debug('Top PB Ratio ' + str(top_bm_tickers[0]) + ': ' + str(top_bm_ratios[0]))
self.Debug('Bottom PB Ratio ' + str(top_bm_tickers[-1]) + ': ' + str(top_bm_ratios[-1]))
# Save cut-off breakpoint for plot
self.breakpoint_max = max(top_bm_ratios)
self.breakpoint_min = min(top_bm_ratios)
total_market_cap = np.sum([i.MarketCap for i in top_bm])
# calculate the weight with the market cap
self.weights = {}
for i in top_bm:
self.weights[str(i.Symbol)] = 1/len(self.sorted_by_bm) #i.MarketCap/total_market_cap
self.Log(self.ticker_PB)
return self.sorted_by_bm
else:
self.Log('FineSelectionFunction went into else...')
return []
def rebalance(self):
# form yearly to monthly rebalance
self.monthly_rebalance = True
self.Debug('Rebalancing on ' + str(self.Time))
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self.changes = changes
self.Debug('Universe Changed on ' + str(self.Time))
def OnData(self, data):
if not self.monthly_rebalance: return
if self.sorted_by_bm:
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
# liquidate stocks not in the trading list
for i in stocks_invested:
if i not in self.sorted_by_bm:
self.Liquidate(i)
# goes long stocks with the highest book-to-market ratio
for i in self.sorted_by_bm:
# Changed this to simple weight +1 for single asset
self.SetHoldings(i, self.weights[str(i)])
if self.current == self.sorted_by_bm:
self.Debug('True')
else:
self.Debug('False')
self.current = self.sorted_by_bm
self.monthly_rebalance = False
# Later in your OnData(self, data):
self.Plot('Fundamentals', 'Breakpoint Min', self.breakpoint_min)
self.Plot('Fundamentals', 'Breakpoint Max', self.breakpoint_max)