| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.045 Tracking Error 0.073 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from datetime import datetime,timedelta
import numpy as np
#from fourhr_support_resistance import *32
Macdlong = None
AboveSupport = None
BelowResistance = None
class CreativeYellowTapir(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 30) # Set Start Date
self.SetEndDate(2020, 12, 30)
self.SetCash(100000) # Set Strategy Cash
self.ticker = "USDCAD"
# Rolling Windows to hold bar close data keyed by symbol
self.Data = {}
#for ticker in tickers:
symbol = self.AddForex(self.ticker, Resolution.Hour, Market.Oanda).Symbol
self.Data[symbol] = SymbolData(self, symbol)
self.tolerance = 0.0025
self.toleranceR = 0.986761994
self.toleranceS = 1.004000555
self.stopLossLevel = -0.05 # stop loss percentage
self.stopProfitLevel = 0.01# stop profit percentage
self.SetWarmUp(400, Resolution.Hour)
#def MarketClose(self):
#self.SupportResistance.Reset()
def OnData(self, data):
#if self.IsWarmingUp: #Data to warm up the algo is being collected.
# return
for symbol, symbolData in self.Data.items(): #Return the dictionary's key-value pairs:
if not (data.ContainsKey(symbol) and data[symbol] is not None and symbolData.IsReady):
continue
if self.IsWarmingUp or not all([symbolData.IsReady for symbolData in self.Data.values()]):
return
MACD = symbolData.macd.Current.Value
MACDfast = symbolData.macd.Fast.Current.Value
RSI = symbolData.rsi.Current.Value
current_price = data[symbol].Close
signalDeltaPercent = (MACD - MACD)/MACDfast
supports, resistances = self.NextSupportResistance(symbolData.closeWindow)
self.Log(f"Symbol: {symbol.Value} , Supports: {supports} , Resistances: {resistances}")
#Getting the next support level
if not len(supports) > 1 and not len(resistances) > 1:
return
#Getting the next resistance level
greater_than_price = [y for y in resistances if y > current_price ]
nextResistanceLevel = greater_than_price[min(range(len(greater_than_price)), key=lambda i: abs(greater_than_price[i] - current_price))]
#Getting the next support level
less_than_price = [x for x in supports if x < current_price ]
nextSupportLevel = less_than_price[min(range(len(less_than_price)), key=lambda i: abs(less_than_price[i] - current_price))]
if self.Portfolio[symbol].Invested:
if self.isLong:
condStopProfit = (current_price - self.buyInPrice)/self.buyInPrice > self.stopProfitLevel
condStopLoss = (current_price - self.buyInPrice)/self.buyInPrice < self.stopLossLevel
if condStopProfit:
self.Liquidate(symbol)
self.Log(f"{self.Time} Long Position Stop Profit at {current_price}")
if condStopLoss:
self.Liquidate(symbol)
self.Log(f"{self.Time} Long Position Stop Loss at {current_price}")
else:
condStopProfit = (self.sellInPrice - current_price)/self.sellInPrice > self.stopProfitLevel
condStopLoss = (self.sellInPrice - current_price)/self.sellInPrice < self.stopLossLevel
if condStopProfit:
self.Liquidate(symbol)
self.Log(f"{self.Time} Short Position Stop Profit at {current_price}")
if condStopLoss:
self.Liquidate(symbol)
self.Log(f"{self.Time} Short Position Stop Loss at {current_price}")
if not self.Portfolio[symbol].Invested:
closestResistanceZone = nextResistanceLevel
closestSupportZone = nextSupportLevel
MacdLong = signalDeltaPercent > self.tolerance
AboveSupport = current_price > closestSupportZone * self.toleranceS
BelowResistance = current_price < closestResistanceZone * self.toleranceR
# tolerance = will be dependent on the minimum number of pips before a r/s level
if RSI > 50 and Macdlong and BelowResistance:
self.SetHoldings(symbol, 1)
# get buy-in price for trailing stop loss/profit
self.buyInPrice = current_price
# entered long position
self.isLong = True
self.Log(f"{self.Time} Entered Long Position at {current_price}")
if RSI < 50 and not Macdlong and AboveSupport:
self.SetHoldings(symbol, -1)
# get sell-in price for trailing stop loss/profit
self.sellInPrice = current_price
# entered short position
self.isLong = False
self.Log(f"{self.Time} Entered Short Position at {current_price}")
def NextSupportResistance(self, window, variation = 0.005, h = 3):
#price = self.Securities[self.ticker].Close
series = window
supports = []
resistances = []
maxima = []
minima = []
# finding maxima and minima by looking for hills/troughs locally
for i in range(h, series.Size-h):
if series[i] > series[i-h] and series[i] > series[i+h]:
maxima.append(series[i])
elif series[i] < series[i-h] and series[i] < series[i+h]:
minima.append(series[i])
# identifying maximas which are resistances
for m in maxima:
r = m * variation
# maxima which are near each other
commonLevel = [x for x in maxima if x > m - r and x < m + r]
# if 2 or more maxima are clustered near an area, it is a resistance
if len(commonLevel) > 1:
# we pick the highest maxima if the cluster as our resistance
level = max(commonLevel)
if level not in resistances:
resistances.append(level)
# identify minima which are supports
for l in minima:
r = l * variation
# minima which are near each other
commonLevel = [x for x in minima if x > l - r and x < l + r]
# if 2 or more minima are clustered near an area, it is a support
if len(commonLevel) > 1:
# We pick the lowest minima of the cluster as our support
level = min(commonLevel)
if level not in supports:
supports.append(level)
return supports, resistances #nextSupportLevel, nextResistanceLevel
class SymbolData:
def __init__(self, algorithm, symbol):
self.macd = MovingAverageConvergenceDivergence(12,26,9)
self.rsi = RelativeStrengthIndex(14)
self.macdWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the fast MACD indicator, takes two values
algorithm.RegisterIndicator(symbol, self.macd, timedelta(hours=4))
self.macd.Updated += self.MacdUpdated #Updating those two values
self.rsiWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the slow SMA indicator, takes two values
algorithm.RegisterIndicator(symbol, self.rsi, timedelta(hours=4))
self.rsi.Updated += self.RsiUpdated #Updating those two values
self.closeWindow = RollingWindow[float](200)
# Add consolidator to track rolling close prices
self.consolidator = QuoteBarConsolidator(4)
self.consolidator.DataConsolidated += self.CloseUpdated
algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
def MacdUpdated(self, sender, updated):
'''Event holder to update the MACD Rolling Window values'''
if self.macd.IsReady:
self.macdWindow.Add(updated)
def RsiUpdated(self, sender, updated):
'''Event holder to update the RSI Rolling Window values'''
if self.rsi.IsReady:
self.rsiWindow.Add(updated)
def CloseUpdated(self, sender, bar):
'''Event holder to update the close Rolling Window values'''
self.closeWindow.Add(bar.Close)
@property
def IsReady(self):
return self.macd.IsReady and self.rsi.IsReady and self.closeWindow.IsReady