| Overall Statistics |
|
Total Trades 475 Average Win 0.10% Average Loss -0.11% Compounding Annual Return -4.274% Drawdown 8.200% Expectancy -0.161 Net Profit -4.959% Sharpe Ratio -0.375 Probabilistic Sharpe Ratio 3.607% Loss Rate 55% Win Rate 45% Profit-Loss Ratio 0.86 Alpha -0.058 Beta 0.304 Annual Standard Deviation 0.073 Annual Variance 0.005 Information Ratio -1.252 Tracking Error 0.104 Treynor Ratio -0.09 Total Fees $476.86 Estimated Strategy Capacity $10000000.00 Lowest Capacity Asset IHG SNUJ365UIOV9 |
from AlgorithmImports import *
from datetime import timedelta, datetime
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
class Third_Attempt(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetEndDate(2022, 3, 1)
self.SetCash(100000)
self.AddUniverseSelection(Highperformance())
self.UniverseSettings.Resolution = Resolution.Daily
self.AddAlpha(BuyPerformance())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.DateRules.Every(DayOfWeek.Monday)))
self.SetExecution(ImmediateExecutionModel())
self.SetWarmUp(90, Resolution.Daily)
class Highperformance (FundamentalUniverseSelectionModel):
def __init__(self):
super().__init__( True, None)
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
sortedByVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
filteredByFundamentals = [x.Symbol for x in sortedByVolume if x.HasFundamentalData]
return filteredByFundamentals
def SelectFine(self, algorithm, fine):
sorted_high = sorted([x for x in fine if x.MarketCap > 2e9
and 0.5 > x.OperationRatios.AVG5YrsROIC.FiveYears > 0.20
and 50 > x.ValuationRatios.PERatio > 20
and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.FinancialServices
and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.Healthcare],
key = lambda x: x.ValuationRatios.PERatio, reverse=True)
fundamental_universe = [x.Symbol for x in sorted_high[:5]]
algorithm.Debug('Universe Selection:')
algorithm.Debug(str(algorithm.Time))
algorithm.Debug('/n ')
for security in fundamental_universe:
algorithm.Debug(str(security.Value))
return fundamental_universe
class BuyPerformance(AlphaModel):
def __init__(self):
self.lastMonth = -1
self.newAdds = []
self.newRemovals = []
def Update(self, algorithm, data):
insights = []
for added in self.newAdds:
if not algorithm.Securities[added].Invested and algorithm.Securities[added].HasData:
insights.append(Insight(added, timedelta(days = 30), InsightType.Price, InsightDirection.Up))
for removed in self.newRemovals:
if removed not in data.Bars:
continue
insights.append(Insight(removed, timedelta(days = 30), InsightType.Price, InsightDirection.Flat))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for security in changes.AddedSecurities:
if security.Symbol not in self.newAdds and security.IsTradable:
self.newAdds.append(security.Symbol)
for security in changes.RemovedSecurities:
if security.IsTradable:
self.newRemovals.append(security.Symbol)