| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.639 Tracking Error 0.228 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data.Market;
using MathNet.Numerics.Statistics;
namespace QuantConnect.Indicators
{
/// <summary>
/// In technical analysis Beta indicator is used to measure volatility or risk of a target (ETF) relative to the overall
/// risk (volatility) of the reference (market indexes). The Beta indicators compares target's price movement to the
/// movements of the indexes over the same period of time.
///
/// It is common practice to use the SPX index as a benchmark of the overall reference market when it comes to Beta
/// calculations.
/// </summary>
public class BetaIndicator : TradeBarIndicator, IIndicatorWarmUpPeriodProvider
{
/// <summary>
/// RollingWindow to store the data points of the target symbol
/// </summary>
private RollingWindow<decimal> _targetDataPoints;
/// <summary>
/// RollingWindow to store the data points of the reference symbol
/// </summary>
private RollingWindow<decimal> _referenceDataPoints;
/// <summary>
/// Symbol of the reference used
/// </summary>
private Symbol _referenceSymbol;
/// <summary>
/// Symbol of the target used
/// </summary>
private Symbol _targetSymbol;
/// <summary>
/// RollingWindow of returns of the target symbol in the given period
/// </summary>
private RollingWindow<double> _targetReturns;
/// <summary>
/// RollingWindow of returns of the reference symbol in the given period
/// </summary>
private RollingWindow<double> _referenceReturns;
/// <summary>
/// Beta of the target used in relation with the reference
/// </summary>
private decimal _beta;
/// <summary>
/// Required period, in data points, for the indicator to be ready and fully initialized.
/// </summary>
public int WarmUpPeriod { get; private set; }
/// <summary>
/// Gets a flag indicating when the indicator is ready and fully initialized
/// </summary>
public override bool IsReady => _targetDataPoints.Samples >= WarmUpPeriod && _referenceDataPoints.Samples >= WarmUpPeriod;
/// <summary>
/// Creates a new BetaIndicator with the specified name, period, target and
/// reference values
/// </summary>
/// <param name="name">The name of this indicator</param>
/// <param name="period">The period of this indicator</param>
/// <param name="targetSymbol">The target symbol of this indicator</param>
/// <param name="referenceSymbol">The reference symbol of this indicator</param>
public BetaIndicator(string name, int period, Symbol targetSymbol, Symbol referenceSymbol)
: base(name)
{
// Assert the period is greater than two, otherwise the beta can not be computed
if (period < 2)
{
throw new Exception($"Period parameter for Beta indicator must be greater than 2 but was {period}");
}
WarmUpPeriod = period + 1;
_referenceSymbol = referenceSymbol;
_targetSymbol = targetSymbol;
_targetDataPoints = new RollingWindow<decimal>(2);
_referenceDataPoints = new RollingWindow<decimal>(2);
_targetReturns = new RollingWindow<double>(period);
_referenceReturns = new RollingWindow<double>(period);
_beta = 0;
}
/// <summary>
/// Computes the next value for this indicator from the given state.
///
/// As this indicator is receiving data points from two different symbols,
/// it's going to compute the next value when the amount of data points
/// of each of them is the same. Otherwise, it will return the last beta
/// value computed
/// </summary>
/// <param name="input">The input value of this indicator on this time step.
/// It can be either from the target or the reference symbol</param>
/// <returns>The beta value of the target used in relation with the reference</returns>
protected override decimal ComputeNextValue(TradeBar input)
{
var inputSymbol = input.Symbol;
if (inputSymbol == _targetSymbol)
{
_targetDataPoints.Add(input.Close);
}
else if(inputSymbol == _referenceSymbol)
{
_referenceDataPoints.Add(input.Close);
}else
{
throw new Exception("The given symbol was not target or reference symbol");
}
if (_targetDataPoints.Samples == _referenceDataPoints.Samples && _referenceDataPoints.Count > 1)
{
_targetReturns.Add(GetNewReturn(ref _targetDataPoints));
_referenceReturns.Add(GetNewReturn(ref _referenceDataPoints));
ComputeBeta();
}
return _beta;
}
/// <summary>
/// Computes the returns with the new given data point and the last given data point
/// </summary>
/// <param name="rollingWindow">The collection of data points from which we want
/// to compute the return</param>
/// <returns>The returns with the new given data point</returns>
private static double GetNewReturn(ref RollingWindow<decimal> rollingWindow)
{
return (double) ((rollingWindow[0] / rollingWindow[1]) - 1);
}
/// <summary>
/// Computes the beta value of the target in relation with the reference
/// using the target and reference returns
/// </summary>
private void ComputeBeta()
{
var varianceComputed = _referenceReturns.Variance();
var covarianceComputed = _targetReturns.Covariance(_referenceReturns);
// Avoid division with NaN or by zero
var variance = !varianceComputed.IsNaNOrZero() ? varianceComputed : 1;
var covariance = !covarianceComputed.IsNaNOrZero() ? covarianceComputed : 0;
_beta = (decimal) (covariance / variance);
}
/// <summary>
/// Resets this indicator to its initial state
/// </summary>
public override void Reset()
{
_targetDataPoints.Reset();
_referenceDataPoints.Reset();
_targetReturns.Reset();
_referenceReturns.Reset();
_beta = 0;
base.Reset();
}
}
}
namespace QuantConnect {
/*
* Basic Template Algorithm
*
* The underlying QCAlgorithm class has many methods which enable you to use QuantConnect.
* We have explained some of these here, but the full base class can be found at:
* https://github.com/QuantConnect/Lean/tree/master/Algorithm
*/
public class BasicTemplateAlgorithm : QCAlgorithm
{
private readonly DateTime _startDate = new DateTime(2019, 1, 1);
private readonly DateTime _endDate = new DateTime(2020, 6, 1);
private BetaIndicator _beta;
/// <summary>
/// Creates a BetaIndicator for the given target symbol in relation with the reference used.
/// The indicator will be automatically updated on the given resolution.
/// </summary>
/// <param name="target">The target symbol whose Beta value we want</param>
/// <param name="reference">The reference symbol to compare with the target symbol</param>
/// <param name="period">The period of the BetaIndicator</param>
/// <param name="resolution">The resolution</param>
/// <returns>The BetaIndicator for the given parameters</returns>
public BetaIndicator B(Symbol target, Symbol reference, int period, Resolution? resolution = null)
{
var name = CreateIndicatorName(QuantConnect.Symbol.None, "B", resolution);
var betaIndicator = new BetaIndicator(name, period, target, reference);
RegisterIndicator(target, betaIndicator, resolution);
RegisterIndicator(reference, betaIndicator, resolution);
if (EnableAutomaticIndicatorWarmUp)
{
WarmUpIndicator(target, betaIndicator, resolution);
WarmUpIndicator(reference, betaIndicator, resolution);
}
return betaIndicator;
}
/// <summary>
/// Called at the start of your algorithm to setup your requirements:
/// </summary>
public override void Initialize()
{
//Set the date range you want to run your algorithm:
SetStartDate(_startDate);
SetEndDate(_endDate);
//Set the starting cash for your strategy:
SetCash(100000);
//Add any stocks you'd like to analyse, and set the resolution:
// Find more symbols here: http://quantconnect.com/data
AddSecurity(SecurityType.Equity, "IBM", Resolution.Daily);
AddSecurity(SecurityType.Equity, "SPY", Resolution.Daily);
_beta = B("IBM", "SPY", 15, Resolution.Daily);
var stocks = new Chart("StocksPrice");
var beta = new Chart("Beta");
// On the Trade Plotter Chart we want 3 series: trades and price:
var ibm = new Series("IBM", SeriesType.Line, "$", Color.Blue, 0);
var spy = new Series("SPY", SeriesType.Line, "$",Color.Purple,0);
//var Volume = new Series("Volume", SeriesType.Bar, 0);
var betaSeries = new Series("beta", SeriesType.Line,"$",Color.Red, 0);
stocks.AddSeries(ibm);
stocks.AddSeries(spy);
beta.AddSeries(betaSeries);
AddChart(stocks);
AddChart(beta);
}
public override void OnData(Slice data)
{
Plot("StocksPrice","IBM", data.Bars["IBM"].Close);
Plot("StocksPrice", "SPY", data.Bars["SPY"].Close);
Plot("Beta", "Beta", _beta.Current.Value);
}
}
}