| Overall Statistics |
|
Total Trades 63 Average Win 0.11% Average Loss -0.05% Compounding Annual Return 21.133% Drawdown 0.400% Expectancy 0.507 Net Profit 1.624% Sharpe Ratio 5.308 Probabilistic Sharpe Ratio 88.932% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 2.11 Alpha 0.142 Beta 0.115 Annual Standard Deviation 0.038 Annual Variance 0.001 Information Ratio -2.863 Tracking Error 0.116 Treynor Ratio 1.765 Total Fees $206.03 |
class OptimizedCalibratedFlange(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013,10,1) # Set Start Date
self.SetEndDate(2013,10,31) # Set End Date
self.security = self.AddEquity("SPY", Resolution.Hour)
self.spy = self.security.Symbol
self.SetSecurityInitializer(self.CustomSecurityInitializer)
def OnData(self, data):
open_orders = self.Transactions.GetOpenOrders(self.spy)
if len(open_orders) != 0: return
if self.Time.day > 10 and self.security.Holdings.Quantity <= 0:
quantity = self.CalculateOrderQuantity(self.spy, .5)
self.Log("MarketOrder: " + str(quantity))
self.MarketOrder(self.spy, quantity, True) # async needed for partial fill market orders
elif self.Time.day > 20 and self.security.Holdings.Quantity >= 0:
quantity = self.CalculateOrderQuantity(self.spy, -.5)
self.Log("MarketOrder: " + str(quantity))
self.MarketOrder(self.spy, quantity, True) # async needed for partial fill market orders
def CustomSecurityInitializer(self, security):
'''Initialize the security with raw prices'''
security.SetSlippageModel(CustomSlippageModel(self))
class CustomSlippageModel:
def __init__(self, algorithm):
self.algorithm = algorithm
def GetSlippageApproximation(self, asset, order):
# custom slippage math
slippage = asset.Price * d.Decimal(0.0001 * np.log10(2*float(order.AbsoluteQuantity)))
self.algorithm.Log("CustomSlippageModel: " + str(slippage))
return slippage