| Overall Statistics |
|
Total Orders 446 Average Win 1.26% Average Loss -0.60% Compounding Annual Return 12.534% Drawdown 15.100% Expectancy 0.660 Start Equity 100000 End Equity 237728.31 Net Profit 137.728% Sharpe Ratio 0.647 Sortino Ratio 0.555 Probabilistic Sharpe Ratio 36.865% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 2.10 Alpha 0.044 Beta 0.264 Annual Standard Deviation 0.096 Annual Variance 0.009 Information Ratio -0.055 Tracking Error 0.149 Treynor Ratio 0.235 Total Fees $662.43 Estimated Strategy Capacity $4200000000.00 Lowest Capacity Asset GOOG T1AZ164W5VTX Portfolio Turnover 1.95% |
# region imports
from AlgorithmImports import *
import torch
from scipy.optimize import minimize
from ast import literal_eval
from pathlib import Path
from functools import partial
from typing import List, Iterator, Optional, Dict
from torch.utils.data import IterableDataset, get_worker_info
from transformers import Trainer, TrainingArguments, set_seed
from gluonts.dataset.pandas import PandasDataset
from gluonts.itertools import Filter
from chronos import ChronosConfig, ChronosPipeline
from chronos.scripts.training.train import ChronosDataset, has_enough_observations, load_model
from chronos.scripts.training import train
from logging import getLogger, INFO
# endregion
class HuggingFaceFineTunedDemo(QCAlgorithm):
"""
This algorithm demonstrates how to fine-tune a HuggingFace model.
It uses the "amazon/chronos-t5-tiny" model to forecast the
future equity curves of the 5 most liquid assets in the market,
then it uses the SciPy package to find the portfolio weights
that will maximize the future Sharpe ratio of the portfolio.
The model is retrained and the portfolio is rebalanced every 3
months.
"""
def initialize(self):
self.set_start_date(2018, 1, 1)
self.set_end_date(2024, 8, 31)
# self.set_start_date(2019, 1, 1)
# self.set_end_date(2024, 4, 1)
self.set_cash(100_000)
self.settings.min_absolute_portfolio_target_percentage = 0
# Define the universe.
spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA)
self.universe_settings.schedule.on(self.date_rules.month_start(spy))
self.universe_settings.resolution = Resolution.DAILY
self._universe = self.add_universe(
self.universe.dollar_volume.top(
self.get_parameter('universe_size', 10)
)
)
# Define some trading parameters.
self._lookback_period = timedelta(
365 * self.get_parameter('lookback_years', 1)
)
self._prediction_length = 3*21 # Three months of trading days
# Add risk management models
self.AddRiskManagement(MaximumDrawdownPercentPerSecurity())
self.AddRiskManagement(TrailingStopRiskManagementModel())
# Schedule rebalances.
self._last_rebalance = datetime.min
self.schedule.on(
self.date_rules.month_start(spy, 1),
self.time_rules.midnight,
self._trade
)
# Add warm up so the algorithm trades on deployment.
self.set_warm_up(timedelta(31))
# Define the model and some of its settings.
self._device_map = "cuda" if torch.cuda.is_available() else "cpu"
self._optimizer = 'adamw_torch_fused' if torch.cuda.is_available() else 'adamw_torch'
self._model_name = "amazon/chronos-t5-tiny"
self._model_path = self.object_store.get_file_path(
f"llm/fine-tune/{self._model_name.replace('/', '-')}/"
)
def on_warmup_finished(self):
# Trade right after warm up is done.
self.log(f"{self.time} - warm up done")
self._trade()
def _sharpe_ratio(
self, weights, returns, risk_free_rate, trading_days_per_year=252):
# Define how to calculate the Sharpe ratio so we can use
# it to optimize the portfolio weights.
# Calculate the annualized returns and covariance matrix.
mean_returns = returns.mean() * trading_days_per_year
cov_matrix = returns.cov() * trading_days_per_year
# Calculate the Sharpe ratio.
portfolio_return = np.sum(mean_returns * weights)
portfolio_std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_std
# Return negative Sharpe ratio because we minimize this
# function in optimization.
return -sharpe_ratio
def _optimize_portfolio(self, equity_curves):
returns = equity_curves.pct_change().dropna()
num_assets = returns.shape[1]
initial_guess = num_assets * [1. / num_assets,]
# Find portfolio weights that mazimize the forward Sharpe
# ratio.
result = minimize(
self._sharpe_ratio,
initial_guess,
args=(
returns,
self.risk_free_interest_rate_model.get_interest_rate(self.time)
),
method='SLSQP',
bounds=tuple((0, 1) for _ in range(num_assets)),
constraints=(
{'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1}
)
)
return result.x
def _trade(self):
# Don't rebalance during warm-up.
if self.is_warming_up:
return
# Only rebalance on a quarterly basis.
if self.time - self._last_rebalance < timedelta(80):
return
self._last_rebalance = self.time
symbols = list(self._universe.selected)
# Get historical equity curves.
history = self.history(symbols, self._lookback_period)['close'].unstack(0)
# Gather the training data.
training_data_by_symbol = {}
for symbol in symbols:
df = history[[symbol]].dropna()
if df.shape[0] < 10: # Skip this asset if there is very little data
continue
# Add this log to check the columns in the DataFrame
# self.debug(f"Columns in dataframe for symbol {symbol}: {df.columns}")
adjusted_df = df.reset_index()[['time', symbol]]
# adjusted_df = adjusted_df.rename(columns={str(symbol.id): 'target'})
adjusted_df = adjusted_df.rename(columns={symbol: 'target'}) # Use symbol directly
adjusted_df['time'] = pd.to_datetime(adjusted_df['time'])
adjusted_df.set_index('time', inplace=True)
adjusted_df.index = adjusted_df.index.normalize() # Remove time component to align with daily frequency
adjusted_df = adjusted_df.resample('D').asfreq()
training_data_by_symbol[symbol] = adjusted_df
tradable_symbols = list(training_data_by_symbol.keys())
# Log training data before fine-tuning
self.debug("Training data shapes:")
for symbol, data in training_data_by_symbol.items():
self.debug(f"{symbol}: {data.shape}")
# Fine-tune the model.
output_dir_path = self._train_chronos(
list(training_data_by_symbol.values()),
context_length=int(252/2), # 6 months
prediction_length=self._prediction_length,
optim=self._optimizer,
model_id=self._model_name,
output_dir=self._model_path,
learning_rate=1e-5,
# Requires Ampere GPUs (e.g., A100)
tf32=False,
max_steps=3
)
# Load the fine-tuned model.
pipeline = ChronosPipeline.from_pretrained(
output_dir_path,
device_map=self._device_map,
torch_dtype=torch.bfloat16,
)
# Forecast the future equity curves.
all_forecasts = pipeline.predict(
[
torch.tensor(history[symbol].dropna())
for symbol in tradable_symbols
],
self._prediction_length
)
# Take the median forecast for each asset.
forecasts_df = pd.DataFrame(
{
symbol: np.quantile(
all_forecasts[i].numpy(), 0.5, axis=0 # 0.5 = median
)
for i, symbol in enumerate(tradable_symbols)
}
)
# Find the weights that maximize the forward Sharpe
# ratio of the portfolio.
optimal_weights = self._optimize_portfolio(forecasts_df)
# # Rebalance the portfolio.
# self.set_holdings(
# [
# PortfolioTarget(symbol, optimal_weights[i])
# for i, symbol in enumerate(tradable_symbols)
# ],
# True
# )
# Rebalance the portfolio with error handling for missing symbols.
self.set_holdings(
[
PortfolioTarget(symbol, optimal_weights[i])
for i, symbol in enumerate(tradable_symbols)
if self.Securities.ContainsKey(symbol)
],
True
)
# Log a message for symbols that are not found.
for symbol in tradable_symbols:
if not self.Securities.ContainsKey(symbol):
self.debug(f"Symbol {symbol} not found in the securities list. Skipping.")
def _train_chronos(
self, training_data,
probability: Optional[str] = None,
context_length: int = 512,
prediction_length: int = 64,
min_past: int = 64,
max_steps: int = 200_000,
save_steps: int = 50_000,
log_steps: int = 500,
per_device_train_batch_size: int = 32,
learning_rate: float = 1e-3,
optim: str = "adamw_torch_fused",
shuffle_buffer_length: int = 100,
gradient_accumulation_steps: int = 2,
model_id: str = "google/t5-efficient-tiny",
model_type: str = "seq2seq",
random_init: bool = False,
tie_embeddings: bool = False,
output_dir: str = "./output/",
tf32: bool = True,
torch_compile: bool = True,
tokenizer_class: str = "MeanScaleUniformBins",
tokenizer_kwargs: str = "{'low_limit': -15.0, 'high_limit': 15.0}",
n_tokens: int = 4096,
n_special_tokens: int = 2,
pad_token_id: int = 0,
eos_token_id: int = 1,
use_eos_token: bool = True,
lr_scheduler_type: str = "linear",
warmup_ratio: float = 0.0,
dataloader_num_workers: int = 1,
max_missing_prop: float = 0.9,
num_samples: int = 20,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0):
# Set up logging for the train object.
train.logger = getLogger()
train.logger.setLevel(INFO)
# Ensure output_dir is a Path object.
output_dir = Path(output_dir)
# Convert probability from string to a list, or set default if
# None.
if isinstance(probability, str):
probability = literal_eval(probability)
elif probability is None:
probability = [1.0 / len(training_data)] * len(training_data)
# Convert tokenizer_kwargs from string to a dictionary.
if isinstance(tokenizer_kwargs, str):
tokenizer_kwargs = literal_eval(tokenizer_kwargs)
# Enable reproducibility.
set_seed(1, True)
# Create datasets for training, filtered by criteria.
train_datasets = [
Filter(
partial(
has_enough_observations,
min_length=min_past + prediction_length,
max_missing_prop=max_missing_prop,
),
PandasDataset(data_frame, freq="D"),
)
for data_frame in training_data
]
# Load the model with the specified configuration.
model = load_model(
model_id=model_id,
model_type=model_type,
vocab_size=n_tokens,
random_init=random_init,
tie_embeddings=tie_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
# Define the configuration for the Chronos
# tokenizer and other settings.
chronos_config = ChronosConfig(
tokenizer_class=tokenizer_class,
tokenizer_kwargs=tokenizer_kwargs,
n_tokens=n_tokens,
n_special_tokens=n_special_tokens,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_eos_token=use_eos_token,
model_type=model_type,
context_length=context_length,
prediction_length=prediction_length,
num_samples=num_samples,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
# Add extra items to model config so that
# it's saved in the ckpt.
model.config.chronos_config = chronos_config.__dict__
# Log the number of training datasets
self.debug(f"Number of training datasets: {len(training_data)}")
# Check dataset shapes
for i, data_frame in enumerate(training_data):
self.debug(f"Dataset {i} shape: {data_frame.shape}")
if data_frame.empty:
self.debug(f"Warning: Dataset {i} is empty.")
# Create a shuffled training dataset with the
# specified parameters.
shuffled_train_dataset = ChronosDataset(
datasets=train_datasets,
probabilities=probability,
tokenizer=chronos_config.create_tokenizer(),
context_length=context_length,
prediction_length=prediction_length,
min_past=min_past,
mode="training",
).shuffle(shuffle_buffer_length=shuffle_buffer_length)
# Log shuffled dataset length
# self.debug(f"Shuffled train dataset length: {len(shuffled_train_dataset)}")
# Log dataset creation without using len()
self.debug("Shuffled train dataset created successfully.")
self.debug(f"ChronosDataset created with {len(train_datasets)} datasets")
for i, dataset in enumerate(train_datasets):
sample_iterator = iter(dataset)
try:
sample = next(sample_iterator)
self.debug(f"Dataset {i} sample: {sample}")
except StopIteration:
self.debug(f"Dataset {i} is empty")
except Exception as e:
self.error(f"Error retrieving sample from dataset {i}: {str(e)}")
# Define the training arguments.
training_args = TrainingArguments(
output_dir=str(output_dir),
per_device_train_batch_size=per_device_train_batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
warmup_ratio=warmup_ratio,
optim=optim,
logging_dir=str(output_dir / "train-logs"),
logging_strategy="steps",
logging_steps=log_steps,
save_strategy="steps",
save_steps=save_steps,
report_to=["tensorboard"],
max_steps=max_steps,
gradient_accumulation_steps=gradient_accumulation_steps,
dataloader_num_workers=dataloader_num_workers,
tf32=tf32, # remove this if not using Ampere GPUs (e.g., A100)
torch_compile=torch_compile,
ddp_find_unused_parameters=False,
remove_unused_columns=False,
)
# Create a Trainer instance for training the model.
trainer = Trainer(
model=model,
args=training_args,
train_dataset=shuffled_train_dataset,
)
# Log DataLoader length
epoch_iterator = trainer.get_train_dataloader()
# Log that the DataLoader was created successfully
self.debug("DataLoader created successfully.")
# try:
# for step, batch in enumerate(epoch_iterator):
# self.debug(f"Fetched batch {step}")
# if step >= 5: # Limit logging to the first 5 batches
# break
# except Exception as e:
# self.error(f"Error fetching batches: {str(e)}")
# Check if the dataset is valid before starting training
# self.debug(f"Trainer initialized with model: {model}")
# self.debug(f"Training arguments: {training_args}")
# self.debug(f"Training dataset: {shuffled_train_dataset}")
# self.debug(f"Model device: {self._device_map}")
# # Iterate through a few batches to inspect the data
# for step, batch in enumerate(epoch_iterator):
# if step < 5: # Limit to a few batches for logging
# self.debug(f"Batch {step}: {batch}")
# else:
# break
# # Start the training process and log the output
# try:
# trainer_output = trainer.train() # Start training
# self.debug(f"Trainer output: {trainer_output}")
# except Exception as e:
# self.error(f"Error during training: {str(e)}")
# # Log inside the training loop
# for step, inputs in enumerate(epoch_iterator):
# self.debug(f"Training step: {step}")
# try:
# # Check the shape of the input batches
# self.debug(f"Inputs: {inputs}")
# # Train for one step
# loss = model(**inputs)
# self.debug(f"Step {step} loss: {loss}")
# except Exception as e:
# self.error(f"Error at step {step}: {str(e)}")
# Start the training process.
trainer.train()
# Save the trained model to the output directory.
model.save_pretrained(output_dir)
# Return the path to the output directory.
return output_dir# region imports
from AlgorithmImports import *
import torch
from scipy.optimize import minimize
from ast import literal_eval
from pathlib import Path
from functools import partial
from typing import List, Iterator, Optional, Dict
from torch.utils.data import IterableDataset, get_worker_info
from transformers import Trainer, TrainingArguments, set_seed
from gluonts.dataset.pandas import PandasDataset
from gluonts.itertools import Filter
from chronos import ChronosConfig, ChronosPipeline
from chronos.scripts.training.train import ChronosDataset, has_enough_observations, load_model
from chronos.scripts.training import train
from logging import getLogger, INFO
# endregion
class HuggingFaceFineTunedDemo(QCAlgorithm):
"""
This algorithm demonstrates how to fine-tune a HuggingFace model.
It uses the "amazon/chronos-t5-tiny" model to forecast the
future equity curves of the 5 most liquid assets in the market,
then it uses the SciPy package to find the portfolio weights
that will maximize the future Sharpe ratio of the portfolio.
The model is retrained and the portfolio is rebalanced every 3
months.
"""
def initialize(self):
self.set_start_date(2018, 1, 1)
self.set_end_date(2025, 4, 30)
# self.set_start_date(2019, 1, 1)
# self.set_end_date(2024, 4, 1)
self.set_cash(100_000)
self.settings.min_absolute_portfolio_target_percentage = 0
# Define the universe.
spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA)
self.universe_settings.schedule.on(self.date_rules.month_start(spy))
self.universe_settings.resolution = Resolution.DAILY
self._universe = self.add_universe(
self.universe.dollar_volume.top(
self.get_parameter('universe_size', 10)
)
)
# Define some trading parameters.
self._lookback_period = timedelta(
365 * self.get_parameter('lookback_years', 1)
)
self._prediction_length = 3*21 # Three months of trading days
# Add risk management models
self.AddRiskManagement(MaximumDrawdownPercentPerSecurity())
self.AddRiskManagement(TrailingStopRiskManagementModel())
# Schedule rebalances.
self._last_rebalance = datetime.min
self.schedule.on(
self.date_rules.month_start(spy, 1),
self.time_rules.midnight,
self._trade
)
# Add warm up so the algorithm trades on deployment.
self.set_warm_up(timedelta(31))
# Define the model and some of its settings.
self._device_map = "cuda" if torch.cuda.is_available() else "cpu"
self._optimizer = 'adamw_torch_fused' if torch.cuda.is_available() else 'adamw_torch'
self._model_name = "amazon/chronos-t5-tiny"
self._model_path = self.object_store.get_file_path(
f"llm/fine-tune/{self._model_name.replace('/', '-')}/"
)
def on_warmup_finished(self):
# Trade right after warm up is done.
self.log(f"{self.time} - warm up done")
self._trade()
def _sharpe_ratio(
self, weights, returns, risk_free_rate, trading_days_per_year=252):
# Define how to calculate the Sharpe ratio so we can use
# it to optimize the portfolio weights.
# Calculate the annualized returns and covariance matrix.
mean_returns = returns.mean() * trading_days_per_year
cov_matrix = returns.cov() * trading_days_per_year
# Calculate the Sharpe ratio.
portfolio_return = np.sum(mean_returns * weights)
portfolio_std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_std
# Return negative Sharpe ratio because we minimize this
# function in optimization.
return -sharpe_ratio
def _optimize_portfolio(self, equity_curves):
returns = equity_curves.pct_change().dropna()
num_assets = returns.shape[1]
initial_guess = num_assets * [1. / num_assets,]
# Find portfolio weights that mazimize the forward Sharpe
# ratio.
result = minimize(
self._sharpe_ratio,
initial_guess,
args=(
returns,
self.risk_free_interest_rate_model.get_interest_rate(self.time)
),
method='SLSQP',
# bounds=tuple((0, 1) for _ in range(num_assets)),
bounds=tuple((0, .20) for _ in range(num_assets)),
constraints=(
{'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1}
)
)
return result.x
def _trade(self):
# Don't rebalance during warm-up.
if self.is_warming_up:
return
# Only rebalance on a quarterly basis.
if self.time - self._last_rebalance < timedelta(80):
return
self._last_rebalance = self.time
symbols = list(self._universe.selected)
# Get historical equity curves.
history = self.history(symbols, self._lookback_period)['close'].unstack(0)
# Gather the training data.
training_data_by_symbol = {}
for symbol in symbols:
df = history[[symbol]].dropna()
if df.shape[0] < 10: # Skip this asset if there is very little data
continue
adjusted_df = df.reset_index()[['time', symbol]]
# adjusted_df = adjusted_df.rename(columns={str(symbol.id): 'target'})
adjusted_df = adjusted_df.rename(columns={symbol: 'target'}) # Use symbol directly
adjusted_df['time'] = pd.to_datetime(adjusted_df['time'])
adjusted_df.set_index('time', inplace=True)
adjusted_df.index = adjusted_df.index.normalize() # Remove time component to align with daily frequency
adjusted_df = adjusted_df.resample('D').asfreq()
training_data_by_symbol[symbol] = adjusted_df
tradable_symbols = list(training_data_by_symbol.keys())
# self.debug(f"Training Data: {training_data_by_symbol}")
# self.log(f"Training Data: {training_data_by_symbol}")
# 1/0
# Fine-tune the model.
output_dir_path = self._train_chronos(
list(training_data_by_symbol.values()),
context_length=int(252/2), # 6 months
prediction_length=self._prediction_length,
optim=self._optimizer,
model_id=self._model_name,
output_dir=self._model_path,
learning_rate=1e-5,
# Requires Ampere GPUs (e.g., A100)
tf32=False,
max_steps=3
)
# Load the fine-tuned model.
pipeline = ChronosPipeline.from_pretrained(
output_dir_path,
device_map=self._device_map,
torch_dtype=torch.bfloat16,
)
# Forecast the future equity curves.
all_forecasts = pipeline.predict(
[
torch.tensor(history[symbol].dropna())
for symbol in tradable_symbols
],
self._prediction_length
)
# Take the median forecast for each asset.
forecasts_df = pd.DataFrame(
{
symbol: np.quantile(
all_forecasts[i].numpy(), 0.5, axis=0 # 0.5 = median
)
for i, symbol in enumerate(tradable_symbols)
}
)
# Find the weights that maximize the forward Sharpe
# ratio of the portfolio.
optimal_weights = self._optimize_portfolio(forecasts_df)
# # Rebalance the portfolio.
# self.set_holdings(
# [
# PortfolioTarget(symbol, optimal_weights[i])
# for i, symbol in enumerate(tradable_symbols)
# ],
# True
# )
# Rebalance the portfolio with error handling for missing symbols.
self.set_holdings(
[
PortfolioTarget(symbol, optimal_weights[i])
for i, symbol in enumerate(tradable_symbols)
if self.Securities.ContainsKey(symbol)
],
True
)
# Log a message for symbols that are not found.
for symbol in tradable_symbols:
if not self.Securities.ContainsKey(symbol):
self.debug(f"Symbol {symbol} not found in the securities list. Skipping.")
def _train_chronos(
self, training_data,
probability: Optional[str] = None,
context_length: int = 512,
prediction_length: int = 64,
min_past: int = 64,
max_steps: int = 200_000,
save_steps: int = 50_000,
log_steps: int = 500,
per_device_train_batch_size: int = 32,
learning_rate: float = 1e-3,
optim: str = "adamw_torch_fused",
shuffle_buffer_length: int = 100,
gradient_accumulation_steps: int = 2,
model_id: str = "google/t5-efficient-tiny",
model_type: str = "seq2seq",
random_init: bool = False,
tie_embeddings: bool = False,
output_dir: str = "./output/",
tf32: bool = True,
torch_compile: bool = True,
tokenizer_class: str = "MeanScaleUniformBins",
tokenizer_kwargs: str = "{'low_limit': -15.0, 'high_limit': 15.0}",
n_tokens: int = 4096,
n_special_tokens: int = 2,
pad_token_id: int = 0,
eos_token_id: int = 1,
use_eos_token: bool = True,
lr_scheduler_type: str = "linear",
warmup_ratio: float = 0.0,
dataloader_num_workers: int = 1,
max_missing_prop: float = 0.9,
num_samples: int = 20,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0):
# Set up logging for the train object.
train.logger = getLogger()
train.logger.setLevel(INFO)
# Ensure output_dir is a Path object.
output_dir = Path(output_dir)
# Convert probability from string to a list, or set default if
# None.
if isinstance(probability, str):
probability = literal_eval(probability)
elif probability is None:
probability = [1.0 / len(training_data)] * len(training_data)
# Convert tokenizer_kwargs from string to a dictionary.
if isinstance(tokenizer_kwargs, str):
tokenizer_kwargs = literal_eval(tokenizer_kwargs)
# Enable reproducibility.
set_seed(1, True)
# Create datasets for training, filtered by criteria.
train_datasets = [
Filter(
partial(
has_enough_observations,
min_length=min_past + prediction_length,
max_missing_prop=max_missing_prop,
),
PandasDataset(data_frame, freq="D"),
)
for data_frame in training_data
]
# Load the model with the specified configuration.
model = load_model(
model_id=model_id,
model_type=model_type,
vocab_size=n_tokens,
random_init=random_init,
tie_embeddings=tie_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
# Define the configuration for the Chronos
# tokenizer and other settings.
chronos_config = ChronosConfig(
tokenizer_class=tokenizer_class,
tokenizer_kwargs=tokenizer_kwargs,
n_tokens=n_tokens,
n_special_tokens=n_special_tokens,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_eos_token=use_eos_token,
model_type=model_type,
context_length=context_length,
prediction_length=prediction_length,
num_samples=num_samples,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
# Add extra items to model config so that
# it's saved in the ckpt.
model.config.chronos_config = chronos_config.__dict__
# Create a shuffled training dataset with the
# specified parameters.
shuffled_train_dataset = ChronosDataset(
datasets=train_datasets,
probabilities=probability,
tokenizer=chronos_config.create_tokenizer(),
context_length=context_length,
prediction_length=prediction_length,
min_past=min_past,
mode="training",
).shuffle(shuffle_buffer_length=shuffle_buffer_length)
# Define the training arguments.
training_args = TrainingArguments(
output_dir=str(output_dir),
per_device_train_batch_size=per_device_train_batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
warmup_ratio=warmup_ratio,
optim=optim,
logging_dir=str(output_dir / "train-logs"),
logging_strategy="steps",
logging_steps=log_steps,
save_strategy="steps",
save_steps=save_steps,
report_to=["tensorboard"],
max_steps=max_steps,
gradient_accumulation_steps=gradient_accumulation_steps,
# dataloader_num_workers=dataloader_num_workers,
dataloader_num_workers=0,
tf32=tf32, # remove this if not using Ampere GPUs (e.g., A100)
torch_compile=torch_compile,
ddp_find_unused_parameters=False,
remove_unused_columns=False,
)
# Create a Trainer instance for training the model.
trainer = Trainer(
model=model,
args=training_args,
train_dataset=shuffled_train_dataset,
)
# Start the training process.
trainer.train()
# Save the trained model to the output directory.
model.save_pretrained(output_dir)
# Return the path to the output directory.
return output_dir# region imports
from AlgorithmImports import *
import torch
from scipy.optimize import minimize
from ast import literal_eval
from pathlib import Path
from functools import partial
from typing import List, Iterator, Optional, Dict
from torch.utils.data import IterableDataset, get_worker_info
from transformers import Trainer, TrainingArguments, set_seed
from gluonts.dataset.pandas import PandasDataset
from gluonts.itertools import Filter
from chronos import ChronosConfig, ChronosPipeline
from chronos.scripts.training.train import ChronosDataset, has_enough_observations, load_model
from chronos.scripts.training import train
from logging import getLogger, INFO
# endregion
class HuggingFaceFineTunedDemo(QCAlgorithm):
"""
This algorithm demonstrates how to fine-tune a HuggingFace model.
It uses the "amazon/chronos-t5-tiny" model to forecast the
future equity curves of the 5 most liquid assets in the market,
then it uses the SciPy package to find the portfolio weights
that will maximize the future Sharpe ratio of the portfolio.
The model is retrained and the portfolio is rebalanced every 3
months.
"""
def initialize(self):
self.set_start_date(2018, 1, 1)
# self.set_start_date(2019, 1, 1)
# self.set_end_date(2024, 8, 31)
self.set_cash(100_000)
self.settings.min_absolute_portfolio_target_percentage = 0
# Define the universe.
spy = Symbol.create("SPY", SecurityType.EQUITY, Market.USA)
self.universe_settings.schedule.on(self.date_rules.month_start(spy))
self.universe_settings.resolution = Resolution.DAILY
self._universe = self.add_universe(
self.universe.dollar_volume.top(
self.get_parameter('universe_size', 10)
)
)
# Define some trading parameters.
self._lookback_period = timedelta(
365 * self.get_parameter('lookback_years', 1)
)
self._prediction_length = 3*21 # Three months of trading days
# Add risk management models
self.AddRiskManagement(MaximumDrawdownPercentPerSecurity())
self.AddRiskManagement(TrailingStopRiskManagementModel())
# Schedule rebalances.
self._last_rebalance = datetime.min
self.schedule.on(
self.date_rules.month_start(spy, 1),
self.time_rules.midnight,
self._trade
)
# Add warm up so the algorithm trades on deployment.
self.set_warm_up(timedelta(31))
# Define the model and some of its settings.
self._device_map = "cuda" if torch.cuda.is_available() else "cpu"
self._optimizer = 'adamw_torch_fused' if torch.cuda.is_available() else 'adamw_torch'
self._model_name = "amazon/chronos-t5-tiny"
self._model_path = self.object_store.get_file_path(
f"llm/fine-tune/{self._model_name.replace('/', '-')}/"
)
def on_warmup_finished(self):
# Trade right after warm up is done.
self.log(f"{self.time} - warm up done")
self._trade()
def _sharpe_ratio(
self, weights, returns, risk_free_rate, trading_days_per_year=252):
# Define how to calculate the Sharpe ratio so we can use
# it to optimize the portfolio weights.
# Calculate the annualized returns and covariance matrix.
mean_returns = returns.mean() * trading_days_per_year
cov_matrix = returns.cov() * trading_days_per_year
# Calculate the Sharpe ratio.
portfolio_return = np.sum(mean_returns * weights)
portfolio_std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
sharpe_ratio = (portfolio_return - risk_free_rate) / portfolio_std
# Return negative Sharpe ratio because we minimize this
# function in optimization.
return -sharpe_ratio
def _optimize_portfolio(self, equity_curves):
returns = equity_curves.pct_change().dropna()
num_assets = returns.shape[1]
initial_guess = num_assets * [1. / num_assets,]
# Find portfolio weights that mazimize the forward Sharpe
# ratio.
result = minimize(
self._sharpe_ratio,
initial_guess,
args=(
returns,
self.risk_free_interest_rate_model.get_interest_rate(self.time)
),
method='SLSQP',
bounds=tuple((0, 1) for _ in range(num_assets)),
constraints=(
{'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1}
)
)
return result.x
def _trade(self):
# Don't rebalance during warm-up.
if self.is_warming_up:
return
# Only rebalance on a quarterly basis.
if self.time - self._last_rebalance < timedelta(80):
return
self._last_rebalance = self.time
symbols = list(self._universe.selected)
# Get historical equity curves.
history = self.history(symbols, self._lookback_period)['close'].unstack(0)
# Gather the training data.
training_data_by_symbol = {}
for symbol in symbols:
df = history[[symbol]].dropna()
if df.shape[0] < 10: # Skip this asset if there is very little data
continue
adjusted_df = df.reset_index()[['time', symbol]]
adjusted_df = adjusted_df.rename(columns={str(symbol.id): 'target'})
adjusted_df['time'] = pd.to_datetime(adjusted_df['time'])
adjusted_df.set_index('time', inplace=True)
adjusted_df.index = adjusted_df.index.normalize() # Remove time component to align with daily frequency
adjusted_df = adjusted_df.resample('D').asfreq()
training_data_by_symbol[symbol] = adjusted_df
tradable_symbols = list(training_data_by_symbol.keys())
# Fine-tune the model.
output_dir_path = self._train_chronos(
list(training_data_by_symbol.values()),
context_length=int(252/2), # 6 months
prediction_length=self._prediction_length,
optim=self._optimizer,
model_id=self._model_name,
output_dir=self._model_path,
learning_rate=1e-5,
# Requires Ampere GPUs (e.g., A100)
tf32=False,
max_steps=3
)
# Load the fine-tuned model.
pipeline = ChronosPipeline.from_pretrained(
output_dir_path,
device_map=self._device_map,
torch_dtype=torch.bfloat16,
)
# Forecast the future equity curves.
all_forecasts = pipeline.predict(
[
torch.tensor(history[symbol].dropna())
for symbol in tradable_symbols
],
self._prediction_length
)
# Take the median forecast for each asset.
forecasts_df = pd.DataFrame(
{
symbol: np.quantile(
all_forecasts[i].numpy(), 0.5, axis=0 # 0.5 = median
)
for i, symbol in enumerate(tradable_symbols)
}
)
# Find the weights that maximize the forward Sharpe
# ratio of the portfolio.
optimal_weights = self._optimize_portfolio(forecasts_df)
# # Rebalance the portfolio.
# self.set_holdings(
# [
# PortfolioTarget(symbol, optimal_weights[i])
# for i, symbol in enumerate(tradable_symbols)
# ],
# True
# )
# Rebalance the portfolio with error handling for missing symbols.
self.set_holdings(
[
PortfolioTarget(symbol, optimal_weights[i])
for i, symbol in enumerate(tradable_symbols)
if self.Securities.ContainsKey(symbol)
],
True
)
# Log a message for symbols that are not found.
for symbol in tradable_symbols:
if not self.Securities.ContainsKey(symbol):
self.debug(f"Symbol {symbol} not found in the securities list. Skipping.")
def _train_chronos(
self, training_data,
probability: Optional[str] = None,
context_length: int = 512,
prediction_length: int = 64,
min_past: int = 64,
max_steps: int = 200_000,
save_steps: int = 50_000,
log_steps: int = 500,
per_device_train_batch_size: int = 32,
learning_rate: float = 1e-3,
optim: str = "adamw_torch_fused",
shuffle_buffer_length: int = 100,
gradient_accumulation_steps: int = 2,
model_id: str = "google/t5-efficient-tiny",
model_type: str = "seq2seq",
random_init: bool = False,
tie_embeddings: bool = False,
output_dir: str = "./output/",
tf32: bool = True,
torch_compile: bool = True,
tokenizer_class: str = "MeanScaleUniformBins",
tokenizer_kwargs: str = "{'low_limit': -15.0, 'high_limit': 15.0}",
n_tokens: int = 4096,
n_special_tokens: int = 2,
pad_token_id: int = 0,
eos_token_id: int = 1,
use_eos_token: bool = True,
lr_scheduler_type: str = "linear",
warmup_ratio: float = 0.0,
dataloader_num_workers: int = 1,
max_missing_prop: float = 0.9,
num_samples: int = 20,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0):
# Set up logging for the train object.
train.logger = getLogger()
train.logger.setLevel(INFO)
# Ensure output_dir is a Path object.
output_dir = Path(output_dir)
# Convert probability from string to a list, or set default if
# None.
if isinstance(probability, str):
probability = literal_eval(probability)
elif probability is None:
probability = [1.0 / len(training_data)] * len(training_data)
# Convert tokenizer_kwargs from string to a dictionary.
if isinstance(tokenizer_kwargs, str):
tokenizer_kwargs = literal_eval(tokenizer_kwargs)
# Enable reproducibility.
set_seed(1, True)
# Create datasets for training, filtered by criteria.
train_datasets = [
Filter(
partial(
has_enough_observations,
min_length=min_past + prediction_length,
max_missing_prop=max_missing_prop,
),
PandasDataset(data_frame, freq="D"),
)
for data_frame in training_data
]
# Load the model with the specified configuration.
model = load_model(
model_id=model_id,
model_type=model_type,
vocab_size=n_tokens,
random_init=random_init,
tie_embeddings=tie_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
# Define the configuration for the Chronos
# tokenizer and other settings.
chronos_config = ChronosConfig(
tokenizer_class=tokenizer_class,
tokenizer_kwargs=tokenizer_kwargs,
n_tokens=n_tokens,
n_special_tokens=n_special_tokens,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_eos_token=use_eos_token,
model_type=model_type,
context_length=context_length,
prediction_length=prediction_length,
num_samples=num_samples,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
# Add extra items to model config so that
# it's saved in the ckpt.
model.config.chronos_config = chronos_config.__dict__
# Log the number of training datasets
self.debug(f"Number of training datasets: {len(training_data)}")
# Check dataset shapes
for i, data_frame in enumerate(training_data):
self.debug(f"Dataset {i} shape: {data_frame.shape}")
if data_frame.empty:
self.debug(f"Warning: Dataset {i} is empty.")
# Create a shuffled training dataset with the
# specified parameters.
shuffled_train_dataset = ChronosDataset(
datasets=train_datasets,
probabilities=probability,
tokenizer=chronos_config.create_tokenizer(),
context_length=context_length,
prediction_length=prediction_length,
min_past=min_past,
mode="training",
).shuffle(shuffle_buffer_length=shuffle_buffer_length)
# Log shuffled dataset length
self.debug(f"Shuffled train dataset length: {len(shuffled_train_dataset)}")
# Define the training arguments.
training_args = TrainingArguments(
output_dir=str(output_dir),
per_device_train_batch_size=per_device_train_batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
warmup_ratio=warmup_ratio,
optim=optim,
logging_dir=str(output_dir / "train-logs"),
logging_strategy="steps",
logging_steps=log_steps,
save_strategy="steps",
save_steps=save_steps,
report_to=["tensorboard"],
max_steps=max_steps,
gradient_accumulation_steps=gradient_accumulation_steps,
dataloader_num_workers=dataloader_num_workers,
tf32=tf32, # remove this if not using Ampere GPUs (e.g., A100)
torch_compile=torch_compile,
ddp_find_unused_parameters=False,
remove_unused_columns=False,
)
# Create a Trainer instance for training the model.
trainer = Trainer(
model=model,
args=training_args,
train_dataset=shuffled_train_dataset,
)
# Log DataLoader length
epoch_iterator = trainer.get_train_dataloader()
self.debug(f"DataLoader length: {len(epoch_iterator)}")
# Log inside the training loop
for step, inputs in enumerate(epoch_iterator):
self.debug(f"Training step: {step}, inputs shape: {inputs.shape}")
try:
# Train for one step
loss = model(**inputs)
self.debug(f"Step {step} loss: {loss}")
except Exception as e:
self.error(f"Error at step {step}: {str(e)}")
# Start the training process.
trainer.train()
# Save the trained model to the output directory.
model.save_pretrained(output_dir)
# Return the path to the output directory.
return output_dir