Overall Statistics
Total Trades
1
Average Win
0%
Average Loss
0%
Compounding Annual Return
1.121%
Drawdown
11.100%
Expectancy
0
Net Profit
0.363%
Sharpe Ratio
0.152
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
-0.119
Beta
7.218
Annual Standard Deviation
0.175
Annual Variance
0.03
Information Ratio
0.036
Tracking Error
0.175
Treynor Ratio
0.004
Total Fees
$1.90
import numpy as np

### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
    '''Basic template algorithm simply initializes the date range and cash'''

    def Initialize(self):
        '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''

        self.SetStartDate(2017,12, 1)  #Set Start Date
        self.SetEndDate(2018,3,31)    #Set End Date
        self.SetCash(100000)           #Set Strategy Cash
        # Find more symbols here: http://quantconnect.com/data
        self.AddEquity("SPY", Resolution.Minute)
        self.AddEquity("NFLX", Resolution.Minute)
        self.Debug("numpy test >>> print numpy.pi: " + str(np.pi))

    def OnData(self, data):
        '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.

        Arguments:
            data: Slice object keyed by symbol containing the stock data
        '''
        # self.Log(data.keys())
        self.Log("Start ###")
        for items in data:
            self.Log(items)
        self.Log("Stop ###")
        self.Debug(data)
        if not self.Portfolio.Invested:
            self.SetHoldings("SPY", 1)
            self.SetHoldings