| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 1.121% Drawdown 11.100% Expectancy 0 Net Profit 0.363% Sharpe Ratio 0.152 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.119 Beta 7.218 Annual Standard Deviation 0.175 Annual Variance 0.03 Information Ratio 0.036 Tracking Error 0.175 Treynor Ratio 0.004 Total Fees $1.90 |
import numpy as np
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,12, 1) #Set Start Date
self.SetEndDate(2018,3,31) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Minute)
self.AddEquity("NFLX", Resolution.Minute)
self.Debug("numpy test >>> print numpy.pi: " + str(np.pi))
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# self.Log(data.keys())
self.Log("Start ###")
for items in data:
self.Log(items)
self.Log("Stop ###")
self.Debug(data)
if not self.Portfolio.Invested:
self.SetHoldings("SPY", 1)
self.SetHoldings