| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -27.101 Tracking Error 0.104 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% Drawdown Recovery 0 |
# region imports
from AlgorithmImports import *
# endregion
class GeekyOrangePig(QCAlgorithm):
def initialize(self):
# These throw the error because on_warmup_finished runs at midnight on Feb 1st,
# which is the same time as when _select_assets runs:
self.set_start_date(2021, 1, 30) # Saturday
#self.set_start_date(2021, 1, 31) # Sunday
#self.set_start_date(2021, 2, 1) # Monday
# These date doesn't throw the error:
#self.set_start_date(2021, 1, 29)
#self.set_start_date(2021, 2, 2)
self.set_end_date(self.start_date + timedelta(10))
self.settings.seed_initial_prices = True
self._calls = 0
self.universe_settings.resolution = Resolution.DAILY
self.universe_settings.schedule.on(self.date_rules.month_start("SPY"))
self.add_universe(self._select_assets)
self.set_warm_up(timedelta(450))
def _select_assets(self, fundamentals):
self._calls += 1
self._longs = [list(fundamentals)[self._calls].symbol]
self._shorts = []
return self._longs + self._shorts
def _rebalance(self):
if self.is_warming_up:
return
for symbol in self._longs + self._shorts:
if symbol not in self.securities:
self.quit(f'{symbol} not in self.securities')
def on_warmup_finished(self):
time_rule = self.time_rules.at(8, 0)
self.schedule.on(self.date_rules.month_start("SPY"), time_rule, self._rebalance)
self.schedule.on(self.date_rules.today, time_rule, self._rebalance)