Overall Statistics
Total Orders
2
Average Win
0%
Average Loss
0%
Compounding Annual Return
257.866%
Drawdown
3.000%
Expectancy
0
Start Equity
10000000
End Equity
10648949
Net Profit
6.489%
Sharpe Ratio
11.695
Sortino Ratio
32.393
Probabilistic Sharpe Ratio
98.670%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0.994
Beta
0.956
Annual Standard Deviation
0.13
Annual Variance
0.017
Information Ratio
18.618
Tracking Error
0.052
Treynor Ratio
1.584
Total Fees
$150.50
Estimated Strategy Capacity
$4600000000.00
Lowest Capacity Asset
NQ Y6URRFPZ86BL
Portfolio Turnover
8.43%
# region imports
from AlgorithmImports import *
# endregion

class FocusedFluorescentYellowGoshawk(QCAlgorithm):

    def initialize(self):
        self.set_start_date(2023, 1, 7)
        self.set_end_date(2023, 1, 24)
        self.set_cash(10000000)
        tickers = [
            Futures.Indices.NASDAQ_100_E_MINI,
            Futures.Indices.SP_500_E_MINI
        ]
        self._futures = []
        for ticker in tickers:
            future = self.add_future(ticker)
            self.log(f"{future.symbol}: {future.symbol_properties.contract_multiplier}")
            self._futures.append(future)
    
    def on_data(self, data):
        #q0 = self.calculate_order_quantity(self._futures[0].mapped, 0.1)
        #q1 = self.calculate_order_quantity(self._futures[1].mapped, 0.1)

        if not self.portfolio.invested:
            self.market_order(self._futures[0].mapped, self._futures[1].symbol_properties.contract_multiplier)
            self.market_order(self._futures[1].mapped, -self._futures[0].symbol_properties.contract_multiplier)