| Overall Statistics |
|
Total Trades 2487 Average Win 0.73% Average Loss -0.71% Compounding Annual Return 4.755% Drawdown 41.000% Expectancy 0.008 Net Profit 26.138% Sharpe Ratio 0.189 Probabilistic Sharpe Ratio 2.828% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.03 Alpha 0.022 Beta 0.111 Annual Standard Deviation 0.154 Annual Variance 0.024 Information Ratio -0.161 Tracking Error 0.221 Treynor Ratio 0.264 Total Fees $282936.26 Estimated Strategy Capacity $770000.00 Lowest Capacity Asset OEF RZ8CR0XXNOF9 Portfolio Turnover 130.41% |
from AlgorithmImports import *
import statsmodels.api as sm
class EmotionalLightBrownGuanaco(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetEndDate(2023, 1, 1)
self.SetCash(1000000)
res=Resolution.Hour # change to Resolution.Minute to compare!!!!
self.SPY = self.AddEquity("SPY",res ).Symbol
self.SetBenchmark("SPY")
self.tickers=['GDX',"OEF"]
self.symbols=[]
for i in self.tickers:
self.symbols.append(self.AddEquity(i, res).Symbol)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 60),
self.rebalance_when_in_the_market)
def rebalance_when_in_the_market(self):
if self.Time.day%2!=0:
self.SetHoldings(self.symbols[1],-0.5)
self.SetHoldings(self.symbols[0],0.5)
else:
self.SetHoldings(self.symbols[0],-0.5)
self.SetHoldings(self.symbols[1],0.5)