| Overall Statistics |
|
Total Trades 775 Average Win 9.78% Average Loss -3.42% Compounding Annual Return 353.387% Drawdown 88.100% Expectancy 0.972 Net Profit 593196.953% Sharpe Ratio 3.954 Probabilistic Sharpe Ratio 39.961% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 2.86 Alpha 9.729 Beta 1.894 Annual Standard Deviation 2.509 Annual Variance 6.296 Information Ratio 3.938 Tracking Error 2.494 Treynor Ratio 5.238 Total Fees $6433305.70 |
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
import operator
from math import ceil,floor
from scipy import stats
import numpy as np
from datetime import timedelta
class Piotroski(QCAlgorithm):
def Initialize(self):
''' Backtesting Parameters '''
self.SetStartDate(2015, 1, 1)
# self.SetEndDate(2015, 1, 1)
self.SetCash(50000)
''' Universe Settings '''
self.benchmark = Symbol.Create("SPY", SecurityType.Equity, Market.USA)
self.UniverseSettings.Resolution = Resolution.Minute
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
''' Schedule Settings '''
self.AddEquity("SPY", Resolution.Minute)
self.SetBenchmark("SPY")
self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.BeforeMarketClose("SPY", 10), self.Liquidate)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalance))
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 2), Action(self.Daily))
''' Other Settings '''
self.month = -1
self.symbols = []
self.initiated = -1
def CoarseSelectionFunction(self, coarse):
if self.month != self.Time.month:
sortedCoarse = [x for x in coarse
if x.HasFundamentalData
and x.Price > 5]
sortedDollarVolume = sorted(sortedCoarse, key=lambda x: x.DollarVolume, reverse=True)
topCoarse = sortedDollarVolume
return [x.Symbol for x in topCoarse]
else: return self.symbols
def FineSelectionFunction(self, fine):
if self.month != self.Time.month:
self.month = self.Time.month
''' Retrieve all stocks that have the valid variation ratios that we want '''
filteredFine = [x for x in fine if x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths
and x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths
and x.OperationRatios.ROA.ThreeMonths
and x.OperationRatios.ROA.OneYear
and x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths
and x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths
and x.OperationRatios.GrossMargin.ThreeMonths
and x.OperationRatios.GrossMargin.OneYear
and x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths
and x.OperationRatios.LongTermDebtEquityRatio.OneYear
and x.OperationRatios.CurrentRatio.ThreeMonths
and x.OperationRatios.CurrentRatio.OneYear
and x.OperationRatios.AssetsTurnover.ThreeMonths
and x.OperationRatios.AssetsTurnover.OneYear
and x.ValuationRatios.NormalizedPERatio
and x.EarningReports.BasicAverageShares.ThreeMonths
and x.EarningReports.BasicEPS.TwelveMonths
and x.ValuationRatios.PayoutRatio > 0]
''' Using the FScore class, retrieve the stocks that have a score of X or higher '''
sortedByFScore = [x for x in filteredFine if FScore(x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths,
x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths,
x.OperationRatios.ROA.ThreeMonths,
x.OperationRatios.ROA.OneYear,
x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths,
x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths,
x.OperationRatios.GrossMargin.ThreeMonths,
x.OperationRatios.GrossMargin.OneYear,
x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths,
x.OperationRatios.LongTermDebtEquityRatio.OneYear,
x.OperationRatios.CurrentRatio.ThreeMonths,
x.OperationRatios.CurrentRatio.OneYear,
x.OperationRatios.AssetsTurnover.ThreeMonths,
x.OperationRatios.AssetsTurnover.OneYear).ObjectiveScore() > 6
]
''' The Piotroski score ranks quality stocks, but we still need to determine value by filtering it more '''
sortedByNormalizedPE = sorted(sortedByFScore, key=lambda x: (x.ValuationRatios.NormalizedPERatio), reverse = False)
topFine = sortedByNormalizedPE
self.symbols = [i.Symbol for i in topFine]
return self.symbols
else: return self.symbols
def Daily(self):
if self.initiated < 0:
self.Rebalance()
self.initiated = 1
def Rebalance(self):
filterByPrice = [x for x in self.symbols if self.Securities[x].Price > 0]
sortByPrice = sorted(filterByPrice, key=lambda x: (self.Securities[x].Price), reverse = False)
''' Invest in the selected symbols '''
buyingPower = (self.Portfolio.MarginRemaining / 3) * .995
if buyingPower > 0:
for symbol in sortByPrice:
if self.Securities[symbol].Price > 0:
orderSize = buyingPower / self.Securities[symbol].Price
self.MarketOrder(symbol, orderSize)
else: self.Log("Insufficient Buying Power: " + str(self.Portfolio.MarginRemaining))
class FScore(object):
def __init__(self,
netincome,
operating_cashflow,
roa_current,
roa_past,
issued_current,
issued_past,
grossm_current,
grossm_past,
longterm_current,
longterm_past,
curratio_current,
curratio_past,
assetturn_current,
assetturn_past):
self.netincome = netincome
self.operating_cashflow = operating_cashflow
self.roa_current = roa_current
self.roa_past = roa_past
self.issued_current = issued_current
self.issued_past = issued_past
self.grossm_current = grossm_current
self.grossm_past = grossm_past
self.longterm_current = longterm_current
self.longterm_past = longterm_past
self.curratio_current = curratio_current
self.curratio_past = curratio_past
self.assetturn_current = assetturn_current
self.assetturn_past = assetturn_past
def ObjectiveScore(self):
''' The Piotroski score is broken down into profitability; leverage, liquidity, and source of funds; and operating efficiency categories, as follows: '''
fscore = 0
''' Profitability Criteria '''
fscore += np.where(self.netincome > 0, 1, 0) # Positive Net Income (X Months?)
fscore += np.where(self.operating_cashflow > 0, 1, 0) # Positive Operating Cash Flow
fscore += np.where(self.roa_current > self.roa_past, 1, 0) # Positive Return on Assets
fscore += np.where(self.operating_cashflow > self.roa_current, 1, 0) # Cash flow from operations being greater than net income (quality of earnings)
''' Leverage, Liquidity, and Source of Dunds Criteria '''
fscore += np.where(self.longterm_current <= self.longterm_past, 1, 0) # Lower ratio of long term debt in the current period, compared to the previous year (decreased leverage)
fscore += np.where(self.curratio_current >= self.curratio_past, 1, 0) # Higher current ratio this year compared to the previous year (more liquidity)
fscore += np.where(self.issued_current <= self.issued_past, 1, 0) # No new shares were issued in the last year
''' Operating Efficiency Criteria '''
# A higher gross margin compared to the previous year
fscore += np.where(self.grossm_current >= self.grossm_past, 1, 0) # A higher gross margin compared to the previous year
fscore += np.where(self.assetturn_current >= self.assetturn_past, 1, 0) # A higher asset turnover ratio compared to the previous year (1 point)
return fscore