| Overall Statistics |
|
Total Trades 227 Average Win 0.46% Average Loss -0.39% Compounding Annual Return -2.706% Drawdown 9.700% Expectancy -0.039 Net Profit -2.706% Sharpe Ratio -0.148 Loss Rate 56% Win Rate 44% Profit-Loss Ratio 1.20 Alpha -0.085 Beta 0.666 Annual Standard Deviation 0.11 Annual Variance 0.012 Information Ratio -1.306 Tracking Error 0.092 Treynor Ratio -0.024 Total Fees $240.62 |
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Indicators;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// In this algorithm we demonstrate how to use the coarse fundamental data to
/// define a universe as the top dollar volume
/// </summary>
public class UniverseSelectionADX : QCAlgorithm
{
private const int NumberOfSymbols = 10;
// initialize our changes to nothing
SecurityChanges _changes = SecurityChanges.None;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 01, 01);
SetEndDate(2015, 01, 01);
SetCash(50000);
// this add universe method accepts a single parameter that is a function that
// accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol>
AddUniverse(CoarseSelectionFunction);
}
// sort the data by daily dollar volume and take the top 'NumberOfSymbols'
public static IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
{
// sort descending by daily dollar volume
var sortedByDollarVolume = coarse.OrderByDescending(x => x.DollarVolume);
// take the top entries from our sorted collection
var top5 = sortedByDollarVolume.Take(NumberOfSymbols);
// we need to return only the symbol objects
return top5.Select(x => x.Symbol);
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
public void OnData(TradeBars data)
{
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want 20% allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
var adx = new AverageDirectionalIndex("ADX14", 14);
foreach (var bar in History(security.Symbol, 14))
{
adx.Update(bar);
}
if (adx > 30)
{
SetHoldings(security.Symbol, 0.1m);
}
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
}
}
}