| Overall Statistics |
|
Total Trades 11369 Average Win 0.53% Average Loss -0.36% Compounding Annual Return 9.217% Drawdown 45.500% Expectancy 0.079 Net Profit 216.805% Sharpe Ratio 0.441 Probabilistic Sharpe Ratio 1.025% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 1.46 Alpha 0.106 Beta 0.027 Annual Standard Deviation 0.245 Annual Variance 0.06 Information Ratio 0.066 Tracking Error 0.294 Treynor Ratio 3.982 Total Fees $44162.21 Estimated Strategy Capacity $880000.00 Lowest Capacity Asset ICE TDPZZM7IWEP1 |
from QuantConnect.Data.UniverseSelection import *
import pandas as pd
import numpy as np
class EnhancedShortTermMeanReversionAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2005, 1, 1) #Set Start Date
self.SetEndDate(2018, 1, 27) #Set Start Date
self.SetCash(50000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.AddEquity("SPY", Resolution.Daily)
# rebalance the universe selection once a month
self.rebalence_flag = 0
# make sure to run the universe selection at the start of the algorithm even it's not the manth start
self.first_month_trade_flag = 1
self.trade_flag = 0
# Number of quantiles for sorting returns for mean reversion
self.nq = 5
# Number of quantiles for sorting volatility over five-day mean reversion period
self.nq_vol = 3
# the symbol list after the coarse and fine universe selection
self.universe = None
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.At(0, 0), Action(self.monthly_rebalance))
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 303), Action(self.get_prices))
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 302), Action(self.daily_rebalance))
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 301), Action(self.short))
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 300), Action(self.long))
def monthly_rebalance(self):
# rebalance the universe every month
self.rebalence_flag = 1
def CoarseSelectionFunction(self, coarse):
if self.rebalence_flag or self.first_month_trade_flag:
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume and choose the top 50
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [ x.Symbol for x in filtered[:50]]
else:
return self.universe
def FineSelectionFunction(self, fine):
if self.rebalence_flag or self.first_month_trade_flag:
# filter the stocks which have positive EV To EBITDA
filtered_fine = [x for x in fine if x.ValuationRatios.EVToEBITDA > 0]
self.universe = [x.Symbol for x in filtered_fine]
self.rebalence_flag = 0
self.first_month_trade_flag = 0
self.trade_flag = 1
return self.universe
def OnData(self, data):
pass
def short(self):
if self.universe is None: return
SPY_Velocity = 0
self.long_leverage = 0
self.short_leverage = 0
# request the history of benchmark
pri = self.History(["SPY"], 200, Resolution.Daily)
pos_one = (pri.loc["SPY"]['close'][-1])
pos_six = (pri.loc["SPY"]['close'][-75:].mean())
# calculate velocity of the benchmark
velocity_stop = (pos_one - pos_six)/100.0
SPY_Velocity = velocity_stop
if SPY_Velocity > 0.0:
self.long_leverage = 1.8
self.short_leverage = -0.0
else:
self.long_leverage = 1.1
self.short_leverage = -0.7
for symbol in self.shorts:
if len(self.shorts) + self.existing_shorts == 0: return
self.AddEquity(symbol, Resolution.Daily)
self.SetHoldings(symbol, self.short_leverage/(len(self.shorts) + self.existing_shorts))
def long(self):
if self.universe is None: return
for symbol in self.longs:
if len(self.longs) + self.existing_longs == 0: return
self.AddEquity(symbol, Resolution.Daily)
self.SetHoldings(symbol, self.long_leverage/(len(self.longs) + self.existing_longs))
def get_prices(self):
if self.universe is None: return
# Get the last 6 days of prices for every stock in our universe
prices = {}
hist = self.History(self.universe, 6, Resolution.Daily)
for i in self.universe:
if str(i) in hist.index.levels[0]:
prices[i.Value] = hist.loc[str(i)]['close']
df_prices = pd.DataFrame(prices, columns = prices.keys())
# calculate the daily log return
daily_rets = np.log(df_prices/df_prices.shift(1))
# calculate the latest return but skip the most recent price
rets = (df_prices.iloc[-2] - df_prices.iloc[0]) / df_prices.iloc[0]
# standard deviation of the daily return
stdevs = daily_rets.std(axis = 0)
self.ret_qt = pd.qcut(rets, 5, labels=False) + 1
self.stdev_qt = pd.qcut(stdevs, 3, labels=False) + 1
self.longs = list((self.ret_qt[self.ret_qt == 1].index) & (self.stdev_qt[self.stdev_qt < 3].index))
self.shorts = list((self.ret_qt[self.ret_qt == self.nq].index) & (self.stdev_qt[self.stdev_qt < 3].index))
def daily_rebalance(self):
# rebalance the position in portfolio every day
if self.universe is None: return
self.existing_longs = 0
self.existing_shorts = 0
for symbol in self.Portfolio.Keys:
if (symbol.Value != 'SPY') and (symbol.Value in self.ret_qt.index):
current_quantile = self.ret_qt.loc[symbol.Value]
if self.Portfolio[symbol].Quantity > 0:
if (current_quantile == 1) and (symbol not in self.longs):
self.existing_longs += 1
elif (current_quantile > 1) and (symbol not in self.shorts):
self.SetHoldings(symbol, 0)
elif self.Portfolio[symbol].Quantity < 0:
if (current_quantile == self.nq) and (symbol not in self.shorts):
self.existing_shorts += 1
elif (current_quantile < self.nq) and (symbol not in self.longs):
self.SetHoldings(symbol, 0)