| Overall Statistics |
|
Total Orders 757 Average Win 0.86% Average Loss -1.08% Compounding Annual Return 15.758% Drawdown 27.600% Expectancy 0.327 Start Equity 100000 End Equity 432546.45 Net Profit 332.546% Sharpe Ratio 0.638 Sortino Ratio 0.7 Probabilistic Sharpe Ratio 10.097% Loss Rate 26% Win Rate 74% Profit-Loss Ratio 0.79 Alpha 0.002 Beta 1.164 Annual Standard Deviation 0.177 Annual Variance 0.031 Information Ratio 0.165 Tracking Error 0.105 Treynor Ratio 0.097 Total Fees $3051.03 Estimated Strategy Capacity $86000000.00 Lowest Capacity Asset AMT RBASL7V8PIZP Portfolio Turnover 2.50% |
#region imports
from AlgorithmImports import *
#endregion
# https://quantpedia.com/Screener/Details/14
class MomentumEffectAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2009, 7, 1) # Set Start Date
self.set_end_date(2019, 7, 1) # Set Start Date
self.set_cash(100000) # Set Strategy Cash
self.universe_settings.resolution = Resolution.DAILY
self._momp = {} # Dict of Momentum indicator keyed by Symbol
self._lookback = 252 # Momentum indicator lookback period
self._num_coarse = 100 # Number of symbols selected at Coarse Selection
self._num_fine = 50 # Number of symbols selected at Fine Selection
self._num_long = 5 # Number of symbols with open positions
self._month = -1
self._rebalance = False
self.add_universe(self._coarse_selection_function, self._fine_selection_function)
def _coarse_selection_function(self, coarse):
'''Drop securities which have no fundamental data or have too low prices.
Select those with highest by dollar volume'''
if self._month == self.time.month:
return Universe.UNCHANGED
self._rebalance = True
self._month = self.time.month
selected = sorted([x for x in coarse if x.has_fundamental_data and x.price > 5],
key=lambda x: x.dollar_volume, reverse=True)
return [x.symbol for x in selected[:self._num_coarse]]
def _fine_selection_function(self, fine):
'''Select security with highest market cap'''
selected = sorted(fine, key=lambda f: f.market_cap, reverse=True)
return [x.symbol for x in selected[:self._num_fine]]
def on_data(self, data):
# Update the indicator
for symbol, mom in self._momp.items():
mom.update(self.time, self.securities[symbol].close)
if not self._rebalance:
return
# Selects the securities with highest momentum
sorted_mom = sorted([k for k,v in self._momp.items() if v.is_ready],
key=lambda x: self._momp[x].current.value, reverse=True)
selected = sorted_mom[:self._num_long]
# Liquidate securities that are not in the list
for symbol, mom in self._momp.items():
if symbol not in selected:
self.liquidate(symbol, 'Not selected')
# Buy selected securities
for symbol in selected:
self.set_holdings(symbol, 1/self._num_long)
self._rebalance = False
def on_securities_changed(self, changes):
# Clean up data for removed securities and Liquidate
for security in changes.removed_securities:
symbol = security.symbol
if self._momp.pop(symbol, None) is not None:
self.liquidate(symbol, 'Removed from universe')
for security in changes.added_securities:
if security.symbol not in self._momp:
self._momp[security.symbol] = MomentumPercent(self._lookback)
# Warm up the indicator with history price if it is not ready
added_symbols = [k for k,v in self._momp.items() if not v.is_ready]
history = self.history(added_symbols, 1 + self._lookback, Resolution.DAILY)
history = history.close.unstack(level=0)
for symbol in added_symbols:
ticker = symbol.id.to_string()
if ticker in history:
for time, value in history[ticker].dropna().items():
item = IndicatorDataPoint(symbol, time.date(), value)
self._momp[symbol].update(item)