| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
using System;
using System.Collections.Concurrent;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Indicators;
namespace QuantConnect
{
/// <summary>
/// In this algorithm we demonstrate how to perform some technical analysis as
/// part of your coarse fundamental universe selection
/// </summary>
public class EmaCrossUniverseSelectionAlgorithm : QCAlgorithm
{
// tolerance to prevent bouncing
const decimal Tolerance = 0.001m;
private const int Count = 10;
// use Buffer+Count to leave a little in cash
private const decimal TargetPercent = 0.1m;
private SecurityChanges _changes = SecurityChanges.None;
// holds our coarse fundamental indicators by symbol
private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>();
// class used to improve readability of the coarse selection function
private class SelectionData
{
public readonly ExponentialMovingAverage Fast;
public SelectionData(QCAlgorithm algorithm, string symbol)
{
Fast = new ExponentialMovingAverage(10);
algorithm.Log(String.Format("Initializing: {0}", symbol));
var history = algorithm.History(symbol, 11);
foreach (var tradeBar in history)
{
algorithm.Log(String.Format("Updating: {0}", symbol));
Fast.Update(tradeBar.EndTime, tradeBar.Close);
}
}
// updates the fast and slow indicators, returning true when they're both ready
public bool Update(DateTime time, decimal value)
{
return Fast.Update(time, value);
}
}
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
UniverseSettings.Leverage = 2.0m;
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2010, 01, 01);
SetEndDate(2010, 04, 01);
SetCash(1000*1000);
SetBrokerageModel(BrokerageName.TradierBrokerage);
SetSecurityInitializer(new CustomSecurityInitializer(BrokerageModel, DataNormalizationMode.Raw));
AddUniverse(coarse =>
{
return (from cf in coarse
// grab th SelectionData instance for this symbol
let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData(this, cf.Symbol))
// Update returns true when the indicators are ready, so don't accept until they are
where avg.Update(cf.EndTime, cf.Price)
// only pick symbols who have their fast ema over their slow ema
where avg.Fast > 0.0m
// prefer symbols with a larger delta by percentage between the two averages
orderby avg.Fast ascending
// we only need to return the symbol and return 'Count' symbols
select cf.Symbol).Take(Count);
});
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars dictionary object keyed by symbol containing the stock data</param>
public void OnData(TradeBars data)
{
if (_changes == SecurityChanges.None) return;
// liquidate securities removed from our universe
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we'll simply go long each security we added to the universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, TargetPercent);
}
}
/// <summary>
/// Event fired each time the we add/remove securities from the data feed
/// </summary>
/// <param name="changes">Object containing AddedSecurities and RemovedSecurities</param>
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
}
}
}using QuantConnect.Orders.Slippage;
namespace QuantConnect
{
class CustomSecurityInitializer : BrokerageModelSecurityInitializer
{
private readonly DataNormalizationMode _dataNormalizationMode;
/// <summary>
/// Initializes a new instance of the <see cref="CustomSecurityInitializer"/> class
/// with the specified normalization mode
/// </summary>
/// <param name="brokerageModel">The brokerage model used to get fill/fee/slippage/settlement models</param>
/// <param name="dataNormalizationMode">The desired data normalization mode</param>
public CustomSecurityInitializer(IBrokerageModel brokerageModel, DataNormalizationMode dataNormalizationMode)
: base(brokerageModel)
{
_dataNormalizationMode = dataNormalizationMode;
}
/// <summary>
/// Initializes the specified security by setting up the models
/// </summary>
/// <param name="security">The security to be initialized</param>
public override void Initialize(Security security)
{
// first call the default implementation
base.Initialize(security);
// now apply our data normalization mode
security.SetDataNormalizationMode(_dataNormalizationMode);
security.SlippageModel = new ConstantSlippageModel(0.001m);
}
}
}