| Overall Statistics |
|
Total Trades 6089 Average Win 0.02% Average Loss -0.03% Compounding Annual Return 10.540% Drawdown 25.500% Expectancy 0.323 Net Profit 37.916% Sharpe Ratio 0.665 Loss Rate 25% Win Rate 75% Profit-Loss Ratio 0.77 Alpha 0.217 Beta -9.147 Annual Standard Deviation 0.123 Annual Variance 0.015 Information Ratio 0.544 Tracking Error 0.123 Treynor Ratio -0.009 Total Fees $8096.92 |
# https://quantpedia.com/Screener/Details/26
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
# ----------------------------------------------------------------
# To do
# ----------------------------------------------------------------
# x Rebalance Monthly
# x Change weighting of positions to equal weights
# x Plot development of Breakpoints over time
# - Narrow down to single asset (for testing purposes)
# - Add calculation of target price
# - Overlay covered call strategy linking strikes with breakpoints
# - Overlay LT & ST replication (short put & long call)
# - Extend to multiple tickers
# - Extend to short leg
# ----------------------------------------------------------------
# Some Notes
# ----------------------------------------------------------------
# self.lowercase variables are variables defined by oneself
# self.Uperrcase variables reference QC API
class BooktoMarketAnomaly(QCAlgorithm):
def Initialize(self):
self.Log('Initializing Backtest')
self.Log('_____________________________________________________________________________________________________________________________________')
self.SetStartDate(2016, 1, 1)
self.SetEndDate(2019, 3, 15)
self.SetCash(1000000)
self.sorted_by_bm = None
self.monthly_rebalance = False
# Universe + Settings
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# Benchmark
self.SetBenchmark("SPY")
self.AddEquity("SPY", Resolution.Daily)
# Schedule functions
# Trigger an event every day a specific symbol is trading --> here monthly
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.rebalance))
# Plotting
# Chart - Master Container for the Chart:
breakpPlot = Chart('Fundamentals')
breakpPlot.AddSeries(Series('Breakpoint-Min', SeriesType.Line))
breakpPlot.AddSeries(Series('Breakpoint-Max', SeriesType.Line))
self.AddChart(breakpPlot)
def CoarseSelectionFunction(self, coarse):
if self.monthly_rebalance:
# drop stocks which have no fundamental data or have low price
self.filtered_coarse = [x.Symbol for x in coarse if (x.HasFundamentalData and x.AdjustedPrice > 5)]
else:
self.filtered_coarse = []
return self.filtered_coarse
def FineSelectionFunction(self, fine):
# To calculate the overall breakpoints of a systematic strategy, we need multiple shares (# defined by some cutoff, e.g. top 20% Mcap)
# For testing & replication narrow down to < 5
if self.monthly_rebalance:
# Filter stocks with positive PB Ratio
fine = [x for x in fine if (x.ValuationRatios.PBRatio > 0)]
# Calculate the market cap and add the "MarketCap" property to fine universe object
for i in fine:
i.MarketCap = float(i.EarningReports.BasicAverageShares.ThreeMonths * (i.EarningReports.BasicEPS.TwelveMonths*i.ValuationRatios.PERatio))
# Syntax : sorted(iterable, key, reverse) --> reverse means from highest (expensive) to lowest (cheap)
top_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)[:int(len(fine)*0.2)]
# sorted stocks in the top market-cap list by book-to-market ratio -> cheap first
# lowest B/M Ratio has lowest 1/(P/B) -> but REVERSE here (!)
top_bm = sorted(top_market_cap, key = lambda x: 1 / x.ValuationRatios.PBRatio, reverse=True)[:int(len(top_market_cap)*0.2)]
self.sorted_by_bm = [i.Symbol for i in top_bm]
top_bm_tickers = [i.SecurityReference.SecuritySymbol for i in top_bm]
top_bm_ratios = [i.ValuationRatios.PBRatio for i in top_bm]
current_universe = dict(zip(top_bm_tickers, top_bm_ratios))
current_min = min(current_universe.items(), key=lambda x: x[1])
current_max = max(current_universe.items(), key=lambda x: x[1])
# Save cut-off breakpoint for plot
self.breakpoint_max = current_max[1]
self.breakpoint_min = current_min[1]
# calculate the weight with the market cap
total_market_cap = np.sum([i.MarketCap for i in top_bm])
self.weights = {}
for i in top_bm:
self.weights[str(i.Symbol)] = 1/len(self.sorted_by_bm)
# Logging
self.Log('Current Universe: ')
self.Log('# of stocks: ' + str(len(top_bm)))
self.Log('Max PB Ratio ' + str(current_max))
self.Log('Min PB Ratio ' + str(current_min))
else:
self.sorted_by_bm = []
return self.sorted_by_bm
def rebalance(self):
# form yearly to monthly rebalance
self.monthly_rebalance = True
self.Log('Rebalancing on ' + str(self.Time))
def OnData(self, data):
if not self.monthly_rebalance: return
if self.sorted_by_bm:
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
# liquidate stocks not in the trading list
for i in stocks_invested:
if i not in self.sorted_by_bm:
self.Liquidate(i)
# goes long stocks with the highest book-to-market ratio
for i in self.sorted_by_bm:
# Changed this to simple weight +1 for single asset
self.SetHoldings(i, self.weights[str(i)])
# Later in your OnData(self, data):
self.Plot('Fundamentals', 'Breakpoint Min', self.breakpoint_min)
self.Plot('Fundamentals', 'Breakpoint Max', self.breakpoint_max)
self.monthly_rebalance = False