| Overall Statistics |
|
Total Trades 4 Average Win 5.73% Average Loss -17.31% Compounding Annual Return -6.939% Drawdown 28.400% Expectancy -0.113 Net Profit -6.896% Sharpe Ratio -0.243 Loss Rate 33% Win Rate 67% Profit-Loss Ratio 0.33 Alpha 0.121 Beta -8.617 Annual Standard Deviation 0.207 Annual Variance 0.043 Information Ratio -0.339 Tracking Error 0.207 Treynor Ratio 0.006 Total Fees $134.90 |
import numpy as np
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,1, 1) #Set Start Date
self.SetEndDate(2017,12,31) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Set Benchmark SPY
self.SetBenchmark("SPY")
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("BAC")
self.Schedule.On(self.DateRules.On(2017, 2, 1), self.TimeRules.At(10, 0), Action(self.buy))
self.Schedule.On(self.DateRules.On(2017, 3, 31), self.TimeRules.At(10, 0), Action(self.sell))
self.Schedule.On(self.DateRules.On(2017, 11, 1), self.TimeRules.At(10, 0), Action(self.buy))
self.Schedule.On(self.DateRules.On(2017, 12, 29), self.TimeRules.At(10, 0), Action(self.sell))
def OnData(self, data):
pass
def buy(self):
# place buy order
self.SetHoldings("BAC", 1)
def sell(self):
# place sell order
self.SetHoldings("BAC", -1)