| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% Drawdown Recovery 0 |
# region imports
from AlgorithmImports import *
# endregion
class MeasuredFluorescentYellowChimpanzee(QCAlgorithm):
def initialize(self):
self.set_start_date(self.end_date)
self.xly1_list = [self.add_equity(x).symbol for x in
[ 'MCD', 'YUM', 'CAVA', 'EAT', 'HRB', 'CCK', 'BALL', 'EBAY', 'CART', 'CPNG',
'BIRK', 'TPR', 'URBN', 'TJX', 'BOOT', 'BURL', 'RL', 'PVH', 'WSM', 'DKS', 'FIVE',
'CAKE', 'SBUX', 'CMG', 'SHAK', 'SCI', 'IP', 'SEE', 'W', 'SE', 'CHWY',
'NKE', 'ETSY', 'ROST', 'CROX', 'LULU', 'UAA', 'VFC', 'GAP', 'BBY', 'RH', 'BBWI']]
def on_warmup_finished(self):
self.CheckDataAvailability(self.xly1_list)
def CheckDataAvailability(self, symbols):
dt = datetime.now()
def check_missing(period, resolution):
missing = symbols.copy()
history = self.history[TradeBar](symbols, period, resolution)
for bars in history:
for symbol, bar in bars.items():
if symbol in missing:
missing.remove(symbol)
return missing
missing_daily = check_missing(2, Resolution.DAILY)
if missing_daily:
self.log(f'{missing_daily}=')
missing_minute = check_missing(50, Resolution.MINUTE)
if missing_minute:
self.log(f'{missing_minute}=')
self.quit(f'{datetime.now()-dt}')