| Overall Statistics |
|
Total Trades 21 Average Win 10.16% Average Loss -2.37% Compounding Annual Return 18.822% Drawdown 37.400% Expectancy 0.320 Net Profit 5.932% Sharpe Ratio 0.552 Probabilistic Sharpe Ratio 35.879% Loss Rate 75% Win Rate 25% Profit-Loss Ratio 4.28 Alpha 0.294 Beta 0.557 Annual Standard Deviation 0.532 Annual Variance 0.283 Information Ratio 0.576 Tracking Error 0.511 Treynor Ratio 0.527 Total Fees $600.09 Estimated Strategy Capacity $6000.00 Lowest Capacity Asset CERU VPLW2D47KBXH |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
from UniverseSelectionModel import *
from EmaCrossAlphaModel import *
class GoldenCrossAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 2, 1) # Set Start Date
self.SetEndDate(2020, 6, 1)# Set Start Date
self.SetCash(10000) # Set Strategy Cash
self.SetBenchmark("SPY")
"""
self.AddEquity("CMCO", Resolution.Daily)
self.AddEquity("AY", Resolution.Daily)
self.AddEquity("CFB", Resolution.Daily)
self.AddEquity("AGC", Resolution.Daily)
self.AddEquity("DSWL", Resolution.Daily)
self.AddEquity("DARE", Resolution.Daily)
self.AddEquity("DLTR", Resolution.Daily)
self.AddEquity("FLXN", Resolution.Daily)
self.AddEquity("FORM", Resolution.Daily)
self.AddEquity("AAME", Resolution.Daily)
"""
self.AddEquity("DARE", Resolution.Daily)
self.model = EmaCrossAlphaModel(50, 200, Resolution.Daily)
self.AddAlpha(self.model)
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02))
self.__numberOfSymbols = 100
self.__numberOfSymbolsFine = 5
# self.SetUniverseSelection(EverythingUniverseSelectionModel(True, Resolution.Hour))
self.Log("Initialize complete")
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
self.Log ("OnData() data.len=" + str(len(data))+ ", model.symbolDataBySymbol.len=" + str(len(self.model.symbolDataBySymbol)))
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from itertools import groupby
from math import ceil
class EverythingUniverseSelectionModel(FundamentalUniverseSelectionModel):
'''Defines the QC500 universe as a universe selection model for framework algorithm
For details: https://github.com/QuantConnect/Lean/pull/1663'''
def __init__(self, filterFineData = True, universeSettings = None):
'''Initializes a new default instance of the QC500UniverseSelectionModel'''
super().__init__(filterFineData, universeSettings)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 20 #500
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''Performs coarse selection for the QC500 constituents.
The stocks must have fundamental data
The stock must have positive previous-day close price
The stock must have positive volume on the previous trading day'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
# return the symbol objects our sorted collection
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''Performs fine selection for the QC500 constituents
The company's headquarter must in the U.S.
The stock must be traded on either the NYSE or NASDAQ
At least half a year since its initial public offering
The stock's market cap must be greater than 500 million'''
sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"]
and (algorithm.Time - x.SecurityReference.IPODate).days > 180
and x.MarketCap > 5e8],
key = lambda x: x.CompanyReference.IndustryTemplateCode)
count = len(sortedBySector)
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if count == 0:
return Universe.Unchanged
# Update self.lastMonth after all QC500 criteria checks passed
self.lastMonth = algorithm.Time.month
percent = self.numberOfSymbolsFine / count
sortedByDollarVolume = []
# select stocks with top dollar volume in every single sector
for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode):
y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True)
c = ceil(len(y) * percent)
sortedByDollarVolume.extend(y[:c])
sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
class EmaCrossAlphaModel(AlphaModel):
'''Alpha model that uses an EMA cross to create insights'''
def __init__(self,
fastPeriod = 12,
slowPeriod = 26,
resolution = Resolution.Daily):
'''Initializes a new instance of the EmaCrossAlphaModel class
Args:
fastPeriod: The fast EMA period
slowPeriod: The slow EMA period'''
self.fastPeriod = fastPeriod
self.slowPeriod = slowPeriod
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
algorithm.Log("EmaCrossAlphaModel.Update() - data.len=" + str(len(data)) + ", symbolDataBySymbol.len=" + str(len(self.symbolDataBySymbol)))
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
algorithm.Log(str(algorithm.Time) + " " + str(symbolData.Symbol) + " symbolData.Fast.IsReady=" + str(symbolData.Fast.IsReady) + ", symbolData.Slow.IsReady=" + str(symbolData.Slow.IsReady))
if symbolData.Fast.IsReady and symbolData.Slow.IsReady:
if symbolData.FastIsOverSlow:
if symbolData.Slow > symbolData.Fast:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down))
elif symbolData.SlowIsOverFast:
if symbolData.Fast > symbolData.Slow:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up))
symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow
algorithm.Log("returning insights, len=" + str(len(insights)))
for x in insights:
algorithm.Log(" " + str(x.Symbol) + " direction=" + str(x.Direction))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
algorithm.Log("EmaCrossAlphaModel.OnSecuritiesChanged()")
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
algorithm.Log("AddedSecurities new " + str(added.Symbol))
symbolData = SymbolData(added)
# create fast/slow EMAs
symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution)
algorithm.WarmUpIndicator(added.Symbol, symbolData.Fast, self.resolution)
symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution)
algorithm.WarmUpIndicator(added.Symbol, symbolData.Slow, self.resolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
# a security that was already initialized was re-added, reset the indicators
algorithm.Log("AddedSecurities reset " + str(added.Symbol))
symbolData.Fast.Reset()
symbolData.Slow.Reset()
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security):
self.Security = security
self.Symbol = security.Symbol
self.Fast = None
self.Slow = None
# True if the fast is above the slow, otherwise false.
# This is used to prevent emitting the same signal repeatedly
self.FastIsOverSlow = False
@property
def SlowIsOverFast(self):
return not self.FastIsOverSlow