Overall Statistics
Total Orders
5765
Average Win
1.81%
Average Loss
-0.94%
Compounding Annual Return
7.189%
Drawdown
43.500%
Expectancy
0.037
Start Equity
1000000
End Equity
1517537.8
Net Profit
51.754%
Sharpe Ratio
0.244
Sortino Ratio
0.356
Probabilistic Sharpe Ratio
1.639%
Loss Rate
65%
Win Rate
35%
Profit-Loss Ratio
1.93
Alpha
0.116
Beta
-0.155
Annual Standard Deviation
0.427
Annual Variance
0.183
Information Ratio
0.058
Tracking Error
0.471
Treynor Ratio
-0.676
Total Fees
$514362.20
Estimated Strategy Capacity
$4000000.00
Lowest Capacity Asset
NKD YT87FWY1TBLT
Portfolio Turnover
1397.10%
# region imports
from AlgorithmImports import *
# endregion


class NoiseAreaBreakoutAlgorithm(QCAlgorithm):

    def initialize(self):
        self.set_start_date(2019, 5, 1)
        self.set_end_date(2025, 5, 1)
        self.set_cash(1_000_000)
        # Set some parameters.
        self._trading_interval_length = timedelta(minutes=30)
        self._lookback = 14  # days
        self._target_volatility = 0.02 # 0.02 = 2%
        self._max_exposure = 4  # 4 = 400%
        # Add a universe of Futures contracts to trade.
        self._futures = []
        tickers = [
            Futures.Indices.SP_500_E_MINI,
            Futures.Indices.NIKKEI_225_DOLLAR,
            #Futures.Indices.HANG_SENG,     # https://github.com/QuantConnect/Lean/issues/8751
            #Futures.Indices.EURO_STOXX_50  # https://github.com/QuantConnect/Lean/issues/8748
        ]
        for ticker in tickers:
            future = self.add_future(
                ticker,
                data_mapping_mode=DataMappingMode.LAST_TRADING_DAY,
                data_normalization_mode=DataNormalizationMode.BACKWARDS_PANAMA_CANAL,
                contract_depth_offset=0
            )
            future.set_filter(0, 180)
            future.vwap = self.vwap(future.symbol)
            future.daily_volatility = IndicatorExtensions.of(StandardDeviation(self._lookback), self.roc(future.symbol, 1, Resolution.DAILY))
            future.avg_move_by_interval = {}
            future.yesterdays_close = None
            future.todays_open = None
            self._futures.append(future)
            # Add a Scheduled Event to place orders 30 minutes after market open.
            date_rule = self.date_rules.every_day(future.symbol)
            self.schedule.on(date_rule, self.time_rules.after_market_close(future.symbol, 1), lambda future=future: setattr(future, 'yesterdays_close', future.price))
            self.schedule.on(date_rule, self.time_rules.after_market_open(future.symbol, 1), lambda future=future: setattr(future, 'todays_open', future.open))
            self.schedule.on(date_rule, self.time_rules.every(self._trading_interval_length), lambda future=future: self._rebalance(future))
            self.schedule.on(date_rule, self.time_rules.before_market_close(future.symbol, 1), lambda future=future: self.liquidate(future.mapped))
        # Set a warm-up period to warm-up the indicators.
        self.set_warm_up(timedelta(30))

    def _rebalance(self, future):
        # Wait until the market is open.
        t = self.time
        if (not future.yesterdays_close or
            not future.todays_open or
            not future.exchange.hours.is_open(t, False) or
            not future.exchange.hours.is_open(t - self._trading_interval_length, False)):
            return
        # Create an indicator for this time interval if it doesn't already exist.
        trading_interval = (t.hour, t.minute)
        if trading_interval not in future.avg_move_by_interval:
            future.avg_move_by_interval[trading_interval] = SimpleMovingAverage(self._lookback)
        avg_move = future.avg_move_by_interval[trading_interval]
        # Update the average move indicator.
        move = abs(future.price / future.todays_open - 1)
        if not avg_move.update(t, move):
            return
        # Wait until the daily volatility indicator is ready.
        if not future.daily_volatility.is_ready or self.is_warming_up:
            return
        # Calculate the noise area.
        upper_bound = max(future.yesterdays_close, future.todays_open) * (1+avg_move.current.value)
        lower_bound = min(future.yesterdays_close, future.todays_open) * (1-avg_move.current.value)
        # Scan for entries.
        weight = min(self._max_exposure, self._target_volatility/future.daily_volatility.current.value) / self._max_exposure / len(self._futures)
        contract = self.securities[future.mapped]
        if not contract.holdings.is_long and future.price > upper_bound:
            self.set_holdings(contract.symbol, weight)
        elif not contract.holdings.is_short and future.price < lower_bound:
            self.set_holdings(contract.symbol, -weight)
        # Scan for exits.
        elif (contract.holdings.is_long and future.price < max(upper_bound, future.vwap.current.value) or
            contract.holdings.is_short and future.price > min(lower_bound, future.vwap.current.value)):
            self.liquidate(contract.symbol)
        # Plot the current state.
        #self.plot('Weight', str(future.symbol), weight)
        #self.plot('Noise Area', 'Upper Bound', upper_bound)
        #self.plot('Noise Area', 'Lower Bound', lower_bound)
        #self.plot('Noise Area', 'Price', future.price)
        #self.plot('Noise Area', 'VWAP', future.vwap.current.value)
        #self.plot('Volatility', 'Future', future.daily_volatility.current.value)