| Overall Statistics |
|
Total Trades 329 Average Win 2.96% Average Loss -0.09% Compounding Annual Return 31.362% Drawdown 4.300% Expectancy 8.444 Net Profit 14.460% Sharpe Ratio 3.209 Loss Rate 72% Win Rate 28% Profit-Loss Ratio 33.00 Alpha 0.481 Beta -10.324 Annual Standard Deviation 0.086 Annual Variance 0.007 Information Ratio 2.976 Tracking Error 0.086 Treynor Ratio -0.027 Total Fees $361.88 |
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Indicators")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
import decimal as d
import math
import numpy as np
import pandas as pd
import statistics
from datetime import datetime, timedelta
class MovingAverageCrossAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,9,9) #Set Start Date
self.SetEndDate(2018,3,8) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage)
# Find more symbols here: http://quantconnect.com/data
self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
self.x = self.AddEquity("X", Resolution.Minute).Symbol
self.tbf = self.AddEquity("TBF", Resolution.Minute).Symbol
self.shak = self.AddEquity("SHAK", Resolution.Minute).Symbol
self.hal = self.AddEquity("HAL", Resolution.Minute).Symbol
# create exponential moving averages
self.SPY = self.EMA("SPY", 18, Resolution.Daily);
self.X = self.EMA("X", 15, Resolution.Daily);
self.TBF = self.EMA("TBF", 21, Resolution.Daily);
self.SHAK = self.EMA("SHAK", 50, Resolution.Daily);
self.HAL = self.EMA("HAL", 21, Resolution.Daily);
self.previous = None
def OnData(self, data):
#Define a small tolerance on our checks to avoid bouncing
tolerance = 0.007;
#SPY
if self.Securities["SPY"].Price > self.SPY.Current.Value * d.Decimal(1 + tolerance):
cash = self.Portfolio.Cash * d.Decimal(0.30)
number_of_shares = (cash/self.Securities["SPY"].Price)
self.MarketOrder("SPY", number_of_shares)
if self.Securities["SPY"].Price < self.SPY.Current.Value * d.Decimal(1 - tolerance):
self.Liquidate("SPY")
#X
if self.Securities["X"].Price > self.X.Current.Value * d.Decimal(1 + tolerance):
cash2 = self.Portfolio.Cash * d.Decimal(0.15)
number_of_shares2 = (cash2/self.Securities["X"].Price)
self.MarketOrder("X", number_of_shares2)
if self.Securities["X"].Price < self.X.Current.Value * d.Decimal(1 - tolerance):
self.Liquidate("X")
#TBF
if self.Securities["TBF"].Price > self.TBF.Current.Value * d.Decimal(1 + tolerance):
cash3 = self.Portfolio.Cash * d.Decimal(0.34)
number_of_shares3 = (cash3/self.Securities["TBF"].Price)
self.MarketOrder("TBF", number_of_shares3)
if self.Securities["TBF"].Price < self.TBF.Current.Value * d.Decimal(1 - tolerance):
self.Liquidate("TBF")
#SHAK
if self.Securities["SHAK"].Price > self.SHAK.Current.Value * d.Decimal(1 + tolerance):
cash4 = self.Portfolio.Cash * d.Decimal(0.07)
number_of_shares4 = (cash4/self.Securities["SHAK"].Price)
self.MarketOrder("SHAK", number_of_shares4)
if self.Securities["SHAK"].Price < self.SHAK.Current.Value * d.Decimal(1 - tolerance):
self.Liquidate("SHAK")
#HAL
if self.Securities["HAL"].Price > self.HAL.Current.Value * d.Decimal(1 + tolerance):
cash5 = self.Portfolio.Cash * d.Decimal(0.12)
number_of_shares5 = (cash5/self.Securities["HAL"].Price)
self.MarketOrder("HAL", number_of_shares5)
if self.Securities["HAL"].Price < self.HAL.Current.Value * d.Decimal(1 - tolerance):
self.Liquidate("HAL")
self.previous = self.Time