| Overall Statistics |
|
Total Trades 112 Average Win 0.33% Average Loss -0.15% Compounding Annual Return 4.365% Drawdown 20.700% Expectancy 1.520 Net Profit 7.627% Sharpe Ratio 0.292 Probabilistic Sharpe Ratio 13.144% Loss Rate 21% Win Rate 79% Profit-Loss Ratio 2.18 Alpha 0 Beta 0 Annual Standard Deviation 0.135 Annual Variance 0.018 Information Ratio 0.292 Tracking Error 0.135 Treynor Ratio 0 Total Fees $120.09 Estimated Strategy Capacity $980000.00 Lowest Capacity Asset OEF RZ8CR0XXNOF9 |
import numpy as np
from scipy import stats
from statsmodels.distributions.empirical_distribution import ECDF
from scipy.stats import kendalltau, pearsonr, spearmanr
from scipy.optimize import minimize
from scipy.integrate import quad
import sys
from collections import deque
from AlgorithmImports import *
class CopulaPairsTradingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetCash(100000)
self.numdays = 1000 # length of formation period which determine the copula we use
self.lookbackdays = 50 # length of history data in trading period
self.cap_CL = 0.90 # cap confidence level
self.floor_CL = 0.10 # floor confidence level
self.per_order_proportion = 0.45
self.window = {}
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.day = 0 # keep track of current day for daily rebalance
self.month = 0
self.pair = []
self.trailing_stop = 0.01
self.stock1 = self.AddEquity("SPY", Resolution.Daily).Symbol
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse('PairUniverse', self.PairSelection)
self.current_state = 0
self.stopTickets = {} # keep track of current month for monthly recalculation of optimal trading pair
self.Schedule.On(self.DateRules.EveryDay(self.stock1), self.TimeRules.AfterMarketOpen(self.stock1,1), self.EveryDayAfterMarketOpen)
def EveryDayAfterMarketOpen(self):
self.turn_trading_on = True
def OnData(self, slice):
self.SetSignal(slice) # only executed at first day of each month
if self.Time.day == self.day:
return
long, short = self.pair[0], self.pair[1]
self.stopTargets = {short:0,long:0}
for kvp in self.Securities:
symbol = kvp.Key
if symbol in self.pair:
price = kvp.Value.Price
self.window[symbol].append(price)
if len(self.window[long]) < 2 or len(self.window[short]) < 2:
return
MI_u_v, MI_v_u = self._misprice_index()
if MI_u_v < self.floor_CL and MI_v_u > self.cap_CL and self.current_state!=1:
self.LiquidateAll()
if self.Portfolio.UnsettledCash==0:
quantity = self.CalculateOrderQuantity(short,self.per_order_proportion)
status = self.MarketOrder(short, quantity*-1)
stopPrice = round((1+self.trailing_stop)*self.Securities[short].Price,2)
self.stopTickets[short] = self.StopMarketOrder(short, quantity, stopPrice,'Exited using Sell Stop')
self.stopTargets[short] = self.Securities[short].Price
quantity = self.CalculateOrderQuantity(long,self.per_order_proportion)
status = self.MarketOrder(long, quantity*1)
stopPrice = round((1-self.trailing_stop)*self.Securities[long].Price,2)
self.stopTickets[long] = self.StopMarketOrder(long, quantity*-1, stopPrice,'Exited using Sell Stop')
self.stopTargets[long] = self.Securities[long].Price
self.update_stop(short,long)
self.current_state = 1
else:
self.current_state = 0
elif MI_u_v > self.cap_CL and MI_v_u < self.floor_CL and self.current_state!=-1:
self.LiquidateAll()
if self.Portfolio.UnsettledCash==0:
quantity = self.CalculateOrderQuantity(short,self.per_order_proportion)
status = self.MarketOrder(short, quantity*1)
stopPrice = round((1+self.trailing_stop)*self.Securities[short].Price,2)
self.stopTickets[short] = self.StopMarketOrder(short, quantity, stopPrice,'Exited using Sell Stop')
self.stopTargets[short] = self.Securities[short].Price
quantity = self.CalculateOrderQuantity(long,self.per_order_proportion)
status = self.MarketOrder(long, quantity*-1)
stopPrice = round((1-self.trailing_stop)*self.Securities[long].Price,2)
self.stopTickets[long] = self.StopMarketOrder(long, quantity*-1, stopPrice,'Exited using Sell Stop')
self.stopTargets[long] = self.Securities[long].Price
self.current_state = -1
self.update_stop(short,long)
else:
self.current_state = 0
self.day = self.Time.day
def SetSignal(self, slice):
if self.Time.month == self.month:
return
logreturns = self._get_historical_returns(self.pair, self.numdays)
x, y = logreturns[str(self.pair[0])], logreturns[str(self.pair[1])]
# Convert the two returns series to two uniform values u and v using the empirical distribution functions
ecdf_x, ecdf_y = ECDF(x), ECDF(y)
u, v = [ecdf_x(a) for a in x], [ecdf_y(a) for a in y]
# Compute the Akaike Information Criterion (AIC) for different copulas and choose copula with minimum AIC
tau = kendalltau(x, y)[0] # estimate Kendall'rank correlation
AIC ={} # generate a dict with key being the copula family, value = [theta, AIC]
for i in ['clayton', 'frank', 'gumbel']:
param = self._parameter(i, tau)
lpdf = [self._lpdf_copula(i, param, x, y) for (x, y) in zip(u, v)]
# Replace nan with zero and inf with finite numbers in lpdf list
lpdf = np.nan_to_num(lpdf)
loglikelihood = sum(lpdf)
AIC[i] = [param, -2 * loglikelihood + 2]
# Choose the copula with the minimum AIC
self.copula = min(AIC.items(), key = lambda x: x[1][1])[0]
logreturns = logreturns.tail(self.lookbackdays)
x, y = logreturns[str(self.pair[0])], logreturns[str(self.pair[1])]
self.theta = self._parameter(self.copula, tau)
self.ecdf_x, self.ecdf_y = ECDF(x), ECDF(y)
self.month = self.Time.month
def PairSelection(self, date):
if date.month == self.month:
return Universe.Unchanged
symbols = [ Symbol.Create(x, SecurityType.Equity, Market.USA)
for x in [ "SPY", "OEF"] ]
logreturns = self._get_historical_returns(symbols, self.lookbackdays)
for i in range(0, len(symbols), 2):
x = logreturns[str(symbols[i])]
y = logreturns[str(symbols[i+1])]
self.pair = symbols[i:i+2]
return [x.Value for x in self.pair]
def OnSecuritiesChanged(self, changes):
for security in changes.RemovedSecurities:
symbol = security.Symbol
self.window.pop(symbol)
if security.Invested:
self.Liquidate(symbol, "Removed from Universe")
for security in changes.AddedSecurities:
self.window[security.Symbol] = deque(maxlen = 2)
history = self.History(list(self.window.keys()), 2, Resolution.Daily)
history = history.close.unstack(level=0)
for symbol in self.window:
self.window[symbol].append(history[str(symbol)][0])
def _get_historical_returns(self, symbols, period):
history = self.History(symbols, period, Resolution.Daily)
history = history.close.unstack(level=0)
return (np.log(history) - np.log(history.shift(1))).dropna()
def _parameter(self, family, tau):
if family == 'clayton':
return 2 * tau / (1 - tau)
elif family == 'frank':
integrand = lambda t: t / (np.exp(t) - 1) # generate the integrand
frank_fun = lambda theta: ((tau - 1) / 4.0 - (quad(integrand, sys.float_info.epsilon, theta)[0] / theta - 1) / theta) ** 2
return minimize(frank_fun, 4, method='BFGS', tol=1e-5).x
elif family == 'gumbel':
return 1 / (1 - tau)
def _lpdf_copula(self, family, theta, u, v):
if family == 'clayton':
pdf = (theta + 1) * ((u * (-theta) + v * (-theta) - 1) * (-2 - 1 / theta)) * (u * (-theta - 1) * v ** (-theta - 1))
elif family == 'frank':
num = -theta * (np.exp(-theta) - 1) * (np.exp(-theta * (u + v)))
denom = ((np.exp(-theta * u) - 1) * (np.exp(-theta * v) - 1) + (np.exp(-theta) - 1)) ** 2
pdf = num / denom
elif family == 'gumbel':
A = (-np.log(u)) * theta + (-np.log(v)) * theta
c = np.exp(-A ** (1 / theta))
pdf = c * (u * v) * (-1) * (A * (-2 + 2 / theta)) * ((np.log(u) * np.log(v)) * (theta - 1)) * (1 + (theta - 1) * A * (-1 / theta))
return np.log(pdf)
def _misprice_index(self):
return_x = np.log(self.window[self.pair[0]][-1] / self.window[self.pair[0]][-2])
return_y = np.log(self.window[self.pair[1]][-1] / self.window[self.pair[1]][-2])
u = self.ecdf_x(return_x)
v = self.ecdf_y(return_y)
if self.copula == 'clayton':
MI_u_v = v * (-self.theta - 1) * (u * (-self.theta) + v * (-self.theta) - 1) * (-1 / self.theta - 1) # P(U<u|V=v)
MI_v_u = u * (-self.theta - 1) * (u * (-self.theta) + v * (-self.theta) - 1) * (-1 / self.theta - 1) # P(V<v|U=u)
elif self.copula == 'frank':
A = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta * v) - 1)
B = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta * u) - 1)
C = (np.exp(-self.theta * u) - 1) * (np.exp(-self.theta * v) - 1) + (np.exp(-self.theta) - 1)
MI_u_v = B / C
MI_v_u = A / C
elif self.copula == 'gumbel':
A = (-np.log(u)) * self.theta + (-np.log(v)) * self.theta
C_uv = np.exp(-A ** (1 / self.theta)) # C_uv is gumbel copula function C(u,v)
MI_u_v = C_uv * (A * ((1 - self.theta) / self.theta)) * (-np.log(v)) * (self.theta - 1) * (1.0 / v)
MI_v_u = C_uv * (A * ((1 - self.theta) / self.theta)) * (-np.log(u)) * (self.theta - 1) * (1.0 / u)
return MI_u_v, MI_v_u
def update_stop(self, buy_sym, sell_sym):
if self.Securities[buy_sym].Price > self.stopTargets[buy_sym] and self.stopTargets[buy_sym]!=0:
updateFields = UpdateOrderFields()
updateFields.StopPrice = round(self.Securities[buy_sym].Price*(1-self.trailing_stop),2)
self.stopTickets[buy_sym].Update(updateFields)
self.stopTargets[buy_sym] = self.Securities[buy_sym].Price
if self.Securities[sell_sym].Price < self.stopTargets[sell_sym] and self.stopTargets[sell_sym]!=0:
updateFields = UpdateOrderFields()
updateFields.StopPrice = round(self.Securities[sell_sym].Price*(1+self.trailing_stop),2)
self.stopTickets[sell_sym].Update(updateFields)
self.stopTargets[sell_sym] = self.Securities[sell_sym].Price
#CREAMOS FUNCION DE LIQUIDATEALL() PARA HACER NUESTRA POSICION DE CIERRE
def LiquidateAll(self):
self.Liquidate()
self.Transactions.CancelOpenOrders(self.pair[0])
self.Transactions.CancelOpenOrders(self.pair[1])