| Overall Statistics |
|
Total Trades 87 Average Win 1.02% Average Loss -0.74% Compounding Annual Return 7.648% Drawdown 4.700% Expectancy 0.612 Net Profit 21.810% Sharpe Ratio 1.357 Loss Rate 33% Win Rate 67% Profit-Loss Ratio 1.39 Alpha 0.072 Beta 0.017 Annual Standard Deviation 0.055 Annual Variance 0.003 Information Ratio -0.768 Tracking Error 0.124 Treynor Ratio 4.309 Total Fees $87.00 |
using QuantConnect.Algorithm;
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Market;
namespace QuantConnect
{
/*
* QuantConnect University: Full Basic Template:
*
* The underlying QCAlgorithm class is full of helper methods which enable you to use QuantConnect.
* We have explained some of these here, but the full algorithm can be found at:
* https://github.com/QuantConnect/QCAlgorithm/blob/master/QuantConnect.Algorithm/QCAlgorithm.cs
*/
public class BasicTemplateAlgorithm : QCAlgorithm
{
string symbol = "SPY";
private LogReturn logr14;
private LogReturn logr30;
private LogReturn lastLogr;
private DateTime previous;
//RegisterIndicator(symbol, logr, null);
//Initialize the data and resolution you require for your strategy:
public override void Initialize()
{
//Start and End Date range for the backtest:
SetStartDate(2013, 1, 1);
SetEndDate(DateTime.Now.Date.AddDays(-1));
//Cash allocation
SetCash(25000);
//Add as many securities as you like. All the data will be passed into the event handler:
AddSecurity(SecurityType.Equity, symbol, Resolution.Daily);
logr14 = new LogReturn(14);
logr30 = new LogReturn(30);
lastLogr = logr14;
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
// "TradeBars" object holds many "TradeBar" objects: it is a dictionary indexed by the symbol:
//
// e.g. data["MSFT"] data["GOOG"]
public void OnData(TradeBars data)
{
// update Indicators
decimal price = data[symbol].Close;
IndicatorDataPoint datum = new IndicatorDataPoint(data[symbol].Time, price);
logr14.Update(datum);
logr30.Update(datum);
// wait for the indicators to fully initialize
if (!logr30.IsReady) return;
// stock is moving in an upwards trend
if (logr14.Current.Value > logr30.Current.Value)
{
if (!Portfolio.HoldStock)
{
int quantity = (int)Math.Floor(Portfolio.Cash / data[symbol].Close);
Order(symbol, quantity);
}
}
// stock is moving in a downwards trend
else if (logr30.Current.Value > logr14.Current.Value)
{
Liquidate(symbol);
}
Plot(symbol, logr14);
Plot(symbol, logr30);
}
}
}namespace QuantConnect {
/// <summary>
/// Represents the LogReturn indicator (LOGR)
/// - log returns are useful for identifying price convergence/divergence in a given period
/// - logr = log (current price / last price in period)
/// </summary>
public class LogReturn : WindowIndicator<IndicatorDataPoint>
{
/// <summary>
/// Initializes a new instance of the LogReturn class with the specified name and period
/// </summary>
/// <param name="name">The name of this indicator</param>
/// <param name="period">The period of the LOGR</param>
public LogReturn(string name, int period)
: base(name, period)
{
}
/// <summary>
/// Initializes a new instance of the LogReturn class with the default name and period
/// </summary>
/// <param name="period">The period of the SMA</param>
public LogReturn(int period)
: base("LOGR" + period, period)
{
}
/// <summary>
/// Computes the next value for this indicator from the given state.
/// - logr = log (current price / last price in period)
/// </summary>
/// <param name="window">The window of data held in this indicator</param>
/// <param name="input">The input value to this indicator on this time step</param>
/// <returns>A new value for this indicator</returns>
protected override decimal ComputeNextValue(IReadOnlyWindow<IndicatorDataPoint> window, IndicatorDataPoint input)
{
decimal valuef = input;
decimal value0 = !window.IsReady
? window[window.Count - 1]
: window.MostRecentlyRemoved;
decimal logr = (decimal)Math.Log((double)(valuef / value0));
return logr;
}
}
}