| Overall Statistics |
|
Total Orders 366 Average Win 246.14% Average Loss -12.01% Compounding Annual Return 0% Drawdown 102.300% Expectancy 11.725 Start Equity 1000000 End Equity -206320.4 Net Profit -120.632% Sharpe Ratio 0.893 Sortino Ratio 1.011 Probabilistic Sharpe Ratio 22.203% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 20.50 Alpha 1.741 Beta 9.718 Annual Standard Deviation 2.518 Annual Variance 6.341 Information Ratio 0.902 Tracking Error 2.434 Treynor Ratio 0.231 Total Fees $13902.51 Estimated Strategy Capacity $0 Lowest Capacity Asset XLK XCZJLCMQ99WM|XLK RGRPZX100F39 Portfolio Turnover 5.94% |
#region imports
from AlgorithmImports import *
from arch.unitroot.cointegration import engle_granger
from pykalman import KalmanFilter
#endregion
class PairsTrade(QCAlgorithm):
def Initialize(self):
# Required: Five years of backtest history
self.SetStartDate(2019, 1, 1)
# Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage)
# Required: Significant AUM Capacity
self.SetCash(1000000)
# Required: Benchmark to SPY
self.SetBenchmark("SPY")
self.assets = ["XLK", "XLU"]
# Add Equity ------------------------------------------------
for asset in self.assets:
self.AddEquity(asset, Resolution.Minute)
# Add Options ------------------------------------------------
self.option_symbols = []
for asset in self.assets:
option = self.AddOption(asset)
option.SetFilter(-2, +2, 90, 180) # ATM options with expiration between 90 and 180 days
self.option_symbols.append(option.Symbol)
# Instantiate our model
self.recalibrate()
# Set a variable to indicate the trading bias of the portfolio
self.state = 0
# Set Scheduled Event Method For Kalman Filter updating.
self.Schedule.On(self.DateRules.WeekStart(), self.TimeRules.At(0, 0), self.recalibrate)
# Set Scheduled Event Method For trading every 2 days.
self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), self.TimeRules.BeforeMarketClose("XLK"), self.every_other_day_before_market_close)
self.Schedule.On(self.DateRules.Every(DayOfWeek.Wednesday), self.TimeRules.BeforeMarketClose("XLK"), self.every_other_day_before_market_close)
self.Schedule.On(self.DateRules.Every(DayOfWeek.Friday), self.TimeRules.BeforeMarketClose("XLK"), self.every_other_day_before_market_close)
self.option_contracts = {}
def recalibrate(self):
qb = self
history = qb.History(self.assets, 252*2, Resolution.Daily)
if history.empty: return
# Select the close column and then call the unstack method
data = history['close'].unstack(level=0)
# Convert into log-price series to eliminate compounding effect
log_price = np.log(data)
### Get Cointegration Vectors
# Get the cointegration vector
coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
coint_vector = coint_result.cointegrating_vector[:2]
# Get the spread
spread = log_price @ coint_vector
### Kalman Filter
# Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and observation matrix is [1].
self.kalman_filter = KalmanFilter(transition_matrices = [1],
observation_matrices = [1],
initial_state_mean = spread.iloc[:20].mean(),
observation_covariance = spread.iloc[:20].var(),
em_vars=['transition_covariance', 'initial_state_covariance'])
self.kalman_filter = self.kalman_filter.em(spread.iloc[:20], n_iter=5)
(filtered_state_means, filtered_state_covariances) = self.kalman_filter.filter(spread.iloc[:20])
# Obtain the current Mean and Covariance Matrix expectations.
self.current_mean = filtered_state_means[-1, :]
self.current_cov = filtered_state_covariances[-1, :]
# Initialize a mean series for spread normalization using the Kalman Filter's results.
mean_series = np.array([None]*(spread.shape[0]-20))
# Roll over the Kalman Filter to obtain the mean series.
for i in range(20, spread.shape[0]):
(self.current_mean, self.current_cov) = self.kalman_filter.filter_update(filtered_state_mean = self.current_mean,
filtered_state_covariance = self.current_cov,
observation = spread.iloc[i])
mean_series[i-20] = float(self.current_mean)
# Obtain the normalized spread series.
normalized_spread = (spread.iloc[20:] - mean_series)
### Determine Trading Threshold
# Initialize 50 set levels for testing.
set_levels = self.GetParameter("set_levels", 50)
s0 = np.linspace(0, max(normalized_spread), set_levels)
# Calculate the profit levels using the 50 set levels.
f_bar = np.array([None]*set_levels)
for i in range(set_levels):
f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) / normalized_spread.shape[0]
# Set trading frequency matrix.
D = np.zeros((set_levels-1, set_levels))
for i in range(D.shape[0]):
D[i, i] = 1
D[i, i+1] = -1
# Set level of lambda.
l = 1.0
# Obtain the normalized profit level.
f_star = np.linalg.inv(np.eye(set_levels) + l * D.T@D) @ f_bar.reshape(-1, 1)
s_star = [f_star[i]*s0[i] for i in range(set_levels)]
self.threshold = s0[s_star.index(max(s_star))]
# Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.
self.trading_weight = coint_vector / np.sum(abs(coint_vector))
def every_other_day_before_market_close(self):
qb = self
# Get the real-time log close price for all assets and store in a Series
series = pd.Series()
for symbol in qb.Securities.Keys:
series[symbol] = np.log(qb.Securities[symbol].Close)
# Get the spread
spread = np.sum(series * self.trading_weight)
# Update the Kalman Filter with the Series
(self.current_mean, self.current_cov) = self.kalman_filter.filter_update(filtered_state_mean = self.current_mean,
filtered_state_covariance = self.current_cov,
observation = spread)
# Obtain the normalized spread.
normalized_spread = spread - self.current_mean
# ==============================
# Mean-reversion
if normalized_spread < -self.threshold:
self.trade_options("call", "put")
self.state = 1
elif normalized_spread > self.threshold:
self.trade_options("put", "call")
self.state = -1
# Out of position if spread recovered
elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and normalized_spread < self.threshold:
self.Liquidate()
self.state = 0
def OnData(self, slice):
# Store option chains
for symbol in self.option_symbols:
if symbol in slice.OptionChains:
self.option_contracts[symbol] = slice.OptionChains[symbol]
def trade_options(self, option_type_asset1, option_type_asset2):
contracts = []
for i, asset in enumerate(self.assets):
symbol = self.option_symbols[i]
if symbol in self.option_contracts:
chain = self.option_contracts[symbol]
contract = self.get_atm_option(chain, option_type_asset1 if i == 0 else option_type_asset2)
if contract:
contracts.append(contract)
if len(contracts) == 2:
# Calculate the initial margin requirement for each contract
initial_margin_0 = self.get_initial_margin_requirement(contracts[0], 1).Value
initial_margin_1 = self.get_initial_margin_requirement(contracts[1], 1).Value
# Calculate the weights for each asset
weight_0 = abs(self.trading_weight[0])
weight_1 = abs(self.trading_weight[1])
# Calculate the maximum number of contracts based on 10% of the remaining buying power
buying_power = self.Portfolio.Cash * 0.1
total_margin_needed = weight_0 * initial_margin_0 + weight_1 * initial_margin_1
max_num_contracts = buying_power / total_margin_needed
num_contracts_0 = int(max_num_contracts * weight_0)
num_contracts_1 = int(max_num_contracts * weight_1)
if num_contracts_0 > 0 and num_contracts_1 > 0:
# Calculate limit prices based on current market prices
limit_price_0 = self.Securities[contracts[0].Symbol].Price
limit_price_1 = self.Securities[contracts[1].Symbol].Price
if option_type_asset1 == "call" and option_type_asset2 == "put":
self.LimitOrder(contracts[0].Symbol, num_contracts_0, limit_price_0) # Buy ATM call for the undervalued asset
self.LimitOrder(contracts[1].Symbol, num_contracts_1, limit_price_1) # Buy ATM put for the overvalued asset
elif option_type_asset1 == "put" and option_type_asset2 == "call":
self.LimitOrder(contracts[0].Symbol, num_contracts_0, limit_price_0) # Buy ATM put for the undervalued asset
self.LimitOrder(contracts[1].Symbol, num_contracts_1, limit_price_1) # Buy ATM call for the overvalued asset
def get_initial_margin_requirement(self, contract, quantity):
parameters = InitialMarginParameters(self.Securities[contract.Symbol], quantity)
initial_margin = self.Securities[contract.Symbol].BuyingPowerModel.GetInitialMarginRequirement(parameters)
return initial_margin
def get_atm_option(self, chain, option_type):
if option_type == "call":
calls = sorted([x for x in chain if x.Right == OptionRight.Call and x.Strike <= chain.Underlying.Price], key=lambda x: x.Strike)
if calls:
return calls[-1]
elif option_type == "put":
puts = sorted([x for x in chain if x.Right == OptionRight.Put and x.Strike >= chain.Underlying.Price], key=lambda x: x.Strike)
if puts:
return puts[0]
return None