| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 288.505% Drawdown 2.400% Expectancy 0 Net Profit 5.736% Sharpe Ratio 5.297 Probabilistic Sharpe Ratio 82.550% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 1.65 Beta -0.684 Annual Standard Deviation 0.208 Annual Variance 0.043 Information Ratio 0.807 Tracking Error 0.376 Treynor Ratio -1.613 Total Fees $2.03 |
#from Alphas.RsiAlphaModel import RsiAlphaModel
from RsiAlphaModel import RsiAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
class ParticleQuantumProcessor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 1) # Set Start Date
self.SetEndDate(2019, 1, 15) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.SetWarmUp(30)
self.AddAlpha(RsiAlphaModel(self, 60, Resolution.Daily, warmup = False))
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01))
symbols = [ Symbol.Create("SPY", SecurityType.Equity, Market.USA) ]
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
# if we dont add equity, we dont see a warmup
self.AddEquity("SPY", Resolution.Daily)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if self.IsWarmingUp:
self.Debug("{0}: algo warming up".format(self.Time))
return
if not self.Portfolio.Invested:
self.SetHoldings("SPY", 1)
# END# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Logging")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Logging import Log
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
from datetime import timedelta
from enum import Enum
class RsiAlphaModel(AlphaModel):
'''Uses Wilder's RSI to create insights.
Using default settings, a cross over below 30 or above 70 will trigger a new insight.'''
def __init__(self,
algorithm,
period = 14,
resolution = Resolution.Daily,
warmup = True):
'''Initializes a new instance of the RsiAlphaModel class
Args:
period: The RSI indicator period'''
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol = {}
self.warmup = warmup
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
algorithm.Debug("alpha init: initializing securities")
for s in algorithm.ActiveSecurities.Keys:
algorithm.Debug(s.Value)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
time = str(algorithm.Time)
num = len(self.symbolDataBySymbol.items())
algorithm.Debug(time + " num items in symbol data: " + str(num))
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
if not rsi.IsReady:
algorithm.Debug("rsi ready: no")
continue
algorithm.Debug("rsi ready: yes")
previous_state = symbolData.State
state = self.GetState(rsi, previous_state)
if state != previous_state and rsi.IsReady:
if state == State.TrippedLow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up))
if state == State.TrippedHigh:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down))
symbolData.State = state
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Cleans out old security data and initializes the RSI for any newly added securities.
Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
algorithm.Debug(">> OnSecuritiesChanged started")
# clean up data for removed securities
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
if self.warmup:
history = algorithm.History(addedSymbols, self.period, self.resolution)
algorithm.Debug("warming up RSI")
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
if self.warmup:
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi)
algorithm.Debug(">> OnSecuritiesChanged complete")
def GetState(self, rsi, previous):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
if rsi.Current.Value > 70:
return State.TrippedHigh
if rsi.Current.Value < 30:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > 35:
return State.Middle
if previous == State.TrippedHigh:
if rsi.Current.Value < 65:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi):
self.Symbol = symbol
self.RSI = rsi
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = 0
Middle = 1
TrippedHigh = 2