| Overall Statistics |
|
Total Trades 990 Average Win 1.26% Average Loss -0.86% Compounding Annual Return 9.213% Drawdown 38.400% Expectancy 0.183 Net Profit 55.409% Sharpe Ratio 0.341 Loss Rate 52% Win Rate 48% Profit-Loss Ratio 1.47 Alpha 0.071 Beta 0.704 Annual Standard Deviation 0.437 Annual Variance 0.191 Information Ratio 0.09 Tracking Error 0.427 Treynor Ratio 0.212 Total Fees $4504.21 |
namespace QuantConnect
{
using System.Collections.Concurrent;
public class EmaCrossUniverseSelectionAlgorithm : QCAlgorithm
{
// tolerance to prevent bouncing
const decimal Tolerance = 0.01m;
private const int Count = 10;
// use Buffer+Count to leave a little in cash
private const decimal TargetPercent = 0.1m;
private SecurityChanges _changes = SecurityChanges.None;
// holds our coarse fundamental indicators by symbol
private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>();
// class used to improve readability of the coarse selection function
private class SelectionData
{
public readonly ExponentialMovingAverage Fast;
public readonly ExponentialMovingAverage Slow;
public SelectionData()
{
Fast = new ExponentialMovingAverage(100);
Slow = new ExponentialMovingAverage(300);
}
// computes an object score of how much large the fast is than the slow
public decimal ScaledDelta
{
get { return (Fast - Slow)/((Fast + Slow)/2m); }
}
// updates the EMA50 and EMA100 indicators, returning true when they're both ready
public bool Update(DateTime time, decimal value)
{
return Fast.Update(time, value) && Slow.Update(time, value);
}
}
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
UniverseSettings.Leverage = 2.0m;
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2010, 01, 01);
SetEndDate(2015, 01, 01);
SetCash(100*1000);
Chart stockPlot = new Chart("Trade Plot");
//On the Trade Plotter Chart we want 3 series: trades and price:
Series universeSizeSeries = new Series("Universe Size", SeriesType.Scatter, 0);
stockPlot.AddSeries(universeSizeSeries);
AddChart(stockPlot);
AddUniverse(coarse =>
{
return (from cf in coarse
// grab th SelectionData instance for this symbol
let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData())
// Update returns true when the indicators are ready, so don't accept until they are
where avg.Update(cf.EndTime, cf.Price)
// only pick symbols who have their 50 day ema over their 100 day ema
where avg.Fast > avg.Slow*(1 + Tolerance)
// prefer symbols with a larger delta by percentage between the two averages
orderby avg.ScaledDelta descending
// we only need to return the symbol and return 'Count' symbols
select cf.Symbol).Take(Count);
});
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars dictionary object keyed by symbol containing the stock data</param>
public void OnData(TradeBars data)
{
if (_changes == SecurityChanges.None) return;
// liquidate securities removed from our universe
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we'll simply go long each security we added to the universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, TargetPercent);
}
Plot("Trade Plot", "Universe Size", data.Keys.Count);
}
/// <summary>
/// Event fired each time the we add/remove securities from the data feed
/// </summary>
/// <param name="changes">Object containing AddedSecurities and RemovedSecurities</param>
public override void OnSecuritiesChanged(SecurityChanges changes)
{
Log("OnSecuritiesChanged");
_changes = changes;
}
}
}