| Overall Statistics |
|
Total Trades 261 Average Win 6.62% Average Loss -1.13% Compounding Annual Return 59.636% Drawdown 35.600% Expectancy 4.496 Net Profit 44297.962% Sharpe Ratio 1.947 Probabilistic Sharpe Ratio 98.813% Loss Rate 20% Win Rate 80% Profit-Loss Ratio 5.88 Alpha 0.515 Beta 0.089 Annual Standard Deviation 0.269 Annual Variance 0.072 Information Ratio 1.336 Tracking Error 0.318 Treynor Ratio 5.863 Total Fees $70955.13 |
'''
from: https://www.quantconnect.com/forum/discussion/10246/intersection-of-roc-comparison-using-out-day-approach/p1/comment-29355
https://www.quantconnect.com/forum/discussion/10246/intersection-of-roc-comparison-using-out-day-approach/p1/comment-28928
Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.1 (diversified static lists)
inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang.
'''
import numpy as np
# -----------------------------------------------------------------------------------------------------------
STOCKS = ['QQQ','TQQQ','NFLX']; BONDS = ['TMF','TLH']; VOLA = 105; BASE_RET = 85; VOLA_FCTR = .6; LEV = 0.99;
# -----------------------------------------------------------------------------------------------------------
class ROC_Comparison_IN_OUT(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1)
# self.SetEndDate(2021, 1, 1)
self.cap = 100000
self.STOCKS = [self.AddEquity(ticker, Resolution.Minute).Symbol for ticker in STOCKS]
self.BONDS = [self.AddEquity(ticker, Resolution.Minute).Symbol for ticker in BONDS]
self.ASSETS = [self.STOCKS, self.BONDS]
self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol
self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol
self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol
self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol
self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol
self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol
self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP]
self.bull = 1
self.count = 0
self.outday = 0
self.wt = {}
self.real_wt = {}
self.mkt = []
self.SetWarmUp(timedelta(126))
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 60),
self.daily_check)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120),
self.trade)
symbols = [self.MKT] + self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, VOLA + 1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(VOLA + 1):]
def daily_check(self):
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) * VOLA_FCTR
wait_days = int(vola * BASE_RET)
period = int((1.0 - vola) * BASE_RET)
r = self.history.pct_change(period).iloc[-1]
exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if exit:
self.bull = 0
self.outday = self.count
if self.count >= self.outday + wait_days:
self.bull = 1
self.count += 1
def trade(self):
for sec in self.STOCKS:
self.wt[sec] = LEV/len(self.STOCKS) if self.bull else 0;
for sec in self.BONDS:
self.wt[sec] = 0 if self.bull else LEV/len(self.BONDS);
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap
self.Plot('Strategy Equity', 'SPY', mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 1))
for sec, weight in self.wt.items():
self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4)
self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))