| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.105 Tracking Error 0.04 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
import numpy as np
from datetime import timedelta
from QuantConnect.Securities.Option import OptionPriceModels
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
self.SetStartDate(2017, 6, 1)
self.SetEndDate(2017, 6, 15)
self.SetWarmUp(30,Resolution.Daily) # Warm up technical indicators
self.AddEquity("IBM", Resolution.Minute)
self.option = self.AddOption("IBM", Resolution.Minute)
self.option.SetFilter(-3, +3, timedelta(0), timedelta(30))
self.option.PriceModel = OptionPriceModels.CrankNicolsonFD()
self.Schedule.On(self.DateRules.EveryDay("IBM"),self.TimeRules.AfterMarketOpen("IBM", 60),Action(self.print_first_hour))
def OnData(self, slice):
self.option_data = slice
def print_first_hour(self):
for chain in self.option_data.OptionChains.Values:
self.Log(f'{self.Time}--> Values of Delta: {[x.Greeks.Delta for x in chain]}')