| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class AdjustmentTest(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2012, 1, 1)
self.SetEndDate(2012, 1, 8)
self.SetCash(15000)
# Constant definitions
self.ASSET_UNDERLYING = 'SPY'
self.ASSET_TRADE_LONG = 'AAPL'
# Initialization process
self._asset_underlying = self.AddEquity(self.ASSET_UNDERLYING, Resolution.Minute)
self._asset_trade_long = self.AddEquity(self.ASSET_TRADE_LONG, Resolution.Minute)
self._asset_underlying.SetDataNormalizationMode(DataNormalizationMode.Raw)
self._asset_trade_long.SetDataNormalizationMode(DataNormalizationMode.Raw)
self.Schedule.On(
self.DateRules.EveryDay(self.ASSET_UNDERLYING),
self.TimeRules.BeforeMarketClose(self.ASSET_UNDERLYING, 1),
Action(self._print)
)
stockPlot = Chart('Price Plot')
stockPlot.AddSeries(Series(self.ASSET_UNDERLYING, SeriesType.Line, 0))
stockPlot.AddSeries(Series(self.ASSET_TRADE_LONG, SeriesType.Line, 0))
self.AddChart(stockPlot)
def _print(self):
# Get all historic quotes
underlying_price = float(self.Securities[self.ASSET_UNDERLYING].Close)
long_price = float(self.Securities[self.ASSET_TRADE_LONG].Close)
self.Plot('Price Plot', self.ASSET_UNDERLYING, underlying_price)
self.Plot('Price Plot', self.ASSET_TRADE_LONG, long_price)