| Overall Statistics |
|
Total Trades 131 Average Win 8.39% Average Loss -4.37% Compounding Annual Return 19.231% Drawdown 39.100% Expectancy 1.058 Net Profit 387.428% Sharpe Ratio 0.761 Probabilistic Sharpe Ratio 16.194% Loss Rate 30% Win Rate 70% Profit-Loss Ratio 1.92 Alpha 0.205 Beta -0.1 Annual Standard Deviation 0.256 Annual Variance 0.065 Information Ratio 0.304 Tracking Error 0.296 Treynor Ratio -1.94 Total Fees $1634.55 |
from datetime import datetime
from collections import *
class DualMomentumGem(QCAlgorithm):
def Initialize(self):
self.SetBenchmark("SPY")
self.SetStartDate(2010, 1, 1) # Set Start Date
self.SetEndDate(2019, 1, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.bonds = self.AddEquity("AGG", Resolution.Daily).Symbol
self.lookBackPeriod = 100
#create symbol data for US (SPY), EU (EFA) and emerging market (EEM) ETFs
self.symbolObjects = [SymbolData(self,symbolString, self.lookBackPeriod) for symbolString in ["SPY","EFA","EEM"]]
self.tBill = SymbolData(self,"SHV", self.lookBackPeriod)
self.Schedule.On(self.DateRules.MonthStart(self.symbolObjects[0].Symbol),self.TimeRules.AfterMarketOpen(self.symbolObjects[0].Symbol), self.Rebalance)
self.Portfolio.MarginCallModel = MarginCallModel.Null
self.leverage = 2
self.SetWarmUp(self.lookBackPeriod)
def Rebalance(self):
self.symbolObjects.sort(key=lambda symbolObject: symbolObject.Momentum.Current.Value, reverse=True)
currentLong = self.symbolObjects[0].Symbol
if self.symbolObjects[0].Momentum.Current.Value < self.tBill.Momentum.Current.Value:
currentLong = self.bonds
self.SetHoldings(currentLong, self.leverage, True)
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self,algorithm, symbolString,lookBackPeriod):
self.Symbol = algorithm.AddEquity(symbolString, Resolution.Daily).Symbol
self.Momentum = algorithm.MOM(self.Symbol, lookBackPeriod, Resolution.Daily)