| Overall Statistics |
|
Total Trades 282 Average Win 0.22% Average Loss -0.04% Compounding Annual Return 2.789% Drawdown 1.900% Expectancy 0.241 Net Profit 0.878% Sharpe Ratio 0.512 Probabilistic Sharpe Ratio 36.528% Loss Rate 81% Win Rate 19% Profit-Loss Ratio 5.43 Alpha 0.023 Beta -0.064 Annual Standard Deviation 0.038 Annual Variance 0.001 Information Ratio -0.215 Tracking Error 0.131 Treynor Ratio -0.303 Total Fees $398.24 |
from QuantConnect.Data.Custom.Tiingo import *
class TiingoNLPDemonstration(QCAlgorithm):
def Initialize(self):
# Predefine a dictionary of words with scores to scan for in the description
# of the Tiingo news article
self.wordSentiment = {
"bad": -0.5, "good": 0.5,
"negative": -0.5, "great": 0.5,
"growth": 0.5, "fail": -0.5,
"failed": -0.5, "success": 0.5, "nailed": 0.5,
"beat": 0.5, "missed": -0.5,
}
self.SetStartDate(2019, 6, 10)
self.SetEndDate(2019, 10, 3)
self.SetCash(100000)
aapl = self.AddEquity("QQQ", Resolution.Daily).Symbol
self.aaplCustom = self.AddData(TiingoNews, aapl).Symbol
# Request underlying equity data.
ibm = self.AddEquity("QQQ", Resolution.Minute).Symbol
# Add news data for the underlying IBM asset
news = self.AddData(TiingoNews, ibm).Symbol
# Request 60 days of history with the TiingoNews IBM Custom Data Symbol
history = self.History(TiingoNews, news, 60, Resolution.Daily)
# Count the number of items we get from our history request
self.Debug(f"We got {len(history)} items from our history request")
def OnData(self, data):
# Confirm that the data is in the collection
if not data.ContainsKey(self.aaplCustom):
return
# Gets the data from the slice
article = data[self.aaplCustom]
# Article descriptions come in all caps. Lower and split by word
descriptionWords = article.Description.lower().split(" ")
# Take the intersection of predefined words and the words in the
# description to get a list of matching words
intersection = set(self.wordSentiment.keys()).intersection(descriptionWords)
# Get the sum of the article's sentiment, and go long or short
# depending if it's a positive or negative description
sentiment = sum([self.wordSentiment[i] for i in intersection])
self.SetHoldings(article.Symbol.Underlying, sentiment)