| Overall Statistics |
|
Total Trades 1565 Average Win 0.78% Average Loss -0.67% Compounding Annual Return 5.516% Drawdown 30.600% Expectancy 0.110 Net Profit 67.345% Sharpe Ratio 0.445 Loss Rate 49% Win Rate 51% Profit-Loss Ratio 1.16 Alpha 0.045 Beta 0.135 Annual Standard Deviation 0.142 Annual Variance 0.02 Information Ratio -0.362 Tracking Error 0.189 Treynor Ratio 0.467 Total Fees $2487.78 |
import numpy as np
class FamaFrenchFiveFactorsAlgorithm(QCAlgorithm):
''' Stocks Selecting Strategy based on Fama French 5 Factors Model
Reference: https://tevgeniou.github.io/EquityRiskFactors/bibliography/FiveFactor.pdf
'''
def Initialize(self):
self.SetStartDate(2010, 1, 1) # Set Start Date
self.SetEndDate(2019, 8, 1) # Set End Date
self.SetCash(100000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.num_coarse = 200 # Number of symbols selected at Coarse Selection
self.num_long = 5 # Number of stocks to long
self.num_short = 5 # Number of stocks to short
self.longSymbols = [] # Contains the stocks we'd like to long
self.shortSymbols = [] # Contains the stocks we'd like to short
self.nextLiquidate = self.Time # Initialize last trade time
self.rebalance_days = 30
def CoarseSelectionFunction(self, coarse):
'''Drop securities which have no fundamental data or have too low prices.
Select those with highest by dollar volume'''
if self.Time < self.nextLiquidate:
return Universe.Unchanged
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5],
key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in selected[:self.num_coarse]]
def FineSelectionFunction(self, fine):
'''Select securities with highest score on Fama French 5 factors'''
# select stocks with these 5 factors
# Operation profit margin: Quality
# Book value per share: Value
# ROE: Profitability
# TotalEquity: Size
# TotalAssetsGrowth: Investment Pattern
filtered = [x for x in fine if x.OperationRatios.OperationMargin.Value
and x.ValuationRatios.BookValuePerShare
and x.OperationRatios.ROE
and x.FinancialStatements.BalanceSheet.TotalEquity
and x.OperationRatios.TotalAssetsGrowth]
# sort by factors
sortedByFactor1 = sorted(filtered, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True)
sortedByFactor2 = sorted(filtered, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True)
sortedByFactor3 = sorted(filtered, key=lambda x: x.OperationRatios.ROE.Value, reverse=True)
sortedByFactor4 = sorted(filtered, key=lambda x: x.FinancialStatements.BalanceSheet.TotalEquity.Value, reverse=True)
sortedByFactor5 = sorted(filtered, key=lambda x: x.OperationRatios.TotalAssetsGrowth.Value, reverse=False)
stockBySymbol = {}
# get the rank based on 5 factors for every stock
for index, stock in enumerate(sortedByFactor1):
rank1 = index
rank2 = sortedByFactor2.index(stock)
rank3 = sortedByFactor3.index(stock)
rank4 = sortedByFactor4.index(stock)
rank5 = sortedByFactor5.index(stock)
avgRank = np.mean([rank1,rank2,rank3,rank4,rank5])
stockBySymbol[stock.Symbol] = avgRank
sorted_dict = sorted(stockBySymbol.items(), key = lambda x: x[1], reverse = True)
symbols = [x[0] for x in sorted_dict]
# pick the stocks with the highest scores to long
self.longSymbols= symbols[:self.num_long]
# pick the stocks with the lowest scores to short
self.shortSymbols = symbols[-self.num_short:]
return self.longSymbols + self.shortSymbols
def OnData(self, data):
'''Rebalance Every self.rebalance_days'''
# Liquidate stocks in the end of every month
if self.Time >= self.nextLiquidate:
for holding in self.Portfolio.Values:
# if the holding is in the long/short list for the next month, don't liquidate
if holding.Symbol in self.longSymbols or holding.Symbol in self.shortSymbols:
continue
# the holding not in the list
if holding.Invested:
self.Liquidate(holding.Symbol)
count = len(self.longSymbols + self.shortSymbols)
# It means the long & short lists for the month have been cleared
if count == 0:
return
# open long position at the start of every month
for symbol in self.longSymbols:
self.SetHoldings(symbol, 1/count)
# open short position at the start of every month
for symbol in self.shortSymbols:
self.SetHoldings(symbol, -1/count)
# Set the Liquidate Date
self.nextLiquidate = self.Time + timedelta(self.rebalance_days)
# After opening positions, clear the long & short symbol list until next universe selection
self.longSymbols.clear()
self.shortSymbols.clear()