| Overall Statistics |
|
Total Trades 44 Average Win 2.84% Average Loss -1.62% Compounding Annual Return -0.147% Drawdown 18.500% Expectancy 0.002 Net Profit -0.882% Sharpe Ratio 0.011 Loss Rate 64% Win Rate 36% Profit-Loss Ratio 1.76 Alpha 0 Beta 0 Annual Standard Deviation 0.061 Annual Variance 0.004 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $134.00 |
using System;
using System.Linq;
using QuantConnect.Indicators;
using QuantConnect.Models;
namespace QuantConnect.Algorithm.Examples
{
/// <summary>
///
/// QuantConnect University: EMA + SMA Cross
///
/// In this example we look at the canonical 15/30 day moving average cross. This algorithm
/// will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses
/// back below the 30.
/// </summary>
public class QCUMovingAverageCross : QCAlgorithm
{
private Symbol symbol = QuantConnect.Symbol.Create("EURUSD", SecurityType.Forex, Market.FXCM);
private ExponentialMovingAverage fast;
private ExponentialMovingAverage slow;
private SimpleMovingAverage[] ribbon;
public override void Initialize()
{
// set up our analysis span
SetStartDate(2009, 01, 01);
SetEndDate(2015, 01, 01);
SetBenchmark(time => 25000);
SetBrokerageModel(BrokerageName.FxcmBrokerage);
// request SPY data with minute resolution
AddForex(symbol, Resolution.Minute);
// create a 15 day exponential moving average
fast = EMA(symbol, 15, Resolution.Daily);
// create a 30 day exponential moving average
slow = EMA(symbol, 30, Resolution.Daily);
// the following lines produce a simple moving average ribbon, this isn't
// actually used in the algorithm's logic, but shows how easy it is to make
// indicators and plot them!
// note how we can easily define these indicators to receive hourly data
int ribbonCount = 7;
int ribbonInterval = 15*8;
ribbon = new SimpleMovingAverage[ribbonCount];
for(int i = 0; i < ribbonCount; i++)
{
ribbon[i] = SMA(symbol, (i + 1)*ribbonInterval, Resolution.Hour);
}
}
private DateTime previous;
public void OnData(TradeBars data)
{
// a couple things to notice in this method:
// 1. We never need to 'update' our indicators with the data, the engine takes care of this for us
// 2. We can use indicators directly in math expressions
// 3. We can easily plot many indicators at the same time
// wait for our slow ema to fully initialize
if (!slow.IsReady) return;
// only once per day
if (previous.Date == Time.Date) return;
// define a small tolerance on our checks to avoid bouncing
const decimal tolerance = 0.00015m;
var holdings = Portfolio[symbol].Quantity;
// we only want to go long if we're currently short or flat
if (holdings <= 0)
{
// if the fast is greater than the slow, we'll go long
if (fast > slow * (1 + tolerance))
{
Log("BUY >> " + Securities[symbol].Price);
SetHoldings(symbol, 1.0);
}
}
// we only want to liquidate if we're currently long
// if the fast is less than the slow we'll liquidate our long
if (holdings > 0 && fast < slow)
{
Log("SELL >> " + Securities[symbol].Price);
Liquidate(symbol);
}
Plot(symbol, "Price", data[symbol].Price);
Plot("Ribbon", "Price", data[symbol].Price);
// easily plot indicators, the series name will be the name of the indicator
Plot(symbol, fast, slow);
Plot("Ribbon", ribbon);
previous = Time;
}
}
}