| Overall Statistics |
|
Total Trades 2 Average Win 1.05% Average Loss 0% Compounding Annual Return 5.374% Drawdown 3.000% Expectancy 0 Net Profit 1.047% Sharpe Ratio 2.359 Probabilistic Sharpe Ratio 81.940% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.059 Beta -0.011 Annual Standard Deviation 0.023 Annual Variance 0.001 Information Ratio -1.868 Tracking Error 0.168 Treynor Ratio -5.015 Total Fees $2.00 Estimated Strategy Capacity $53000000.00 |
from alphaEMA import EmaCross
from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel
class FormalYellowGreenBee(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 2) # Set Start Date
self.SetEndDate(2021, 3, 15) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
# self.AddEquity("SPY", Resolution.Minute)
self.AddAlpha(EmaCross(50, 200, Resolution.Hour))
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None))
self.UniverseSettings.Resolution = Resolution.Hour
symbols = [ Symbol.Create("TSLA", SecurityType.Equity, Market.USA) , Symbol.Create("HES", SecurityType.Equity, Market.USA) ]
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Adjusted))
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
class EmaCross(AlphaModel):
'''Alpha model that uses an EMA cross to create insights'''
def __init__(self,
fastPeriod = 12,
slowPeriod = 26,
resolution = Resolution.Daily):
'''Initializes a new instance of the EmaCrossAlphaModel class
Args:
fastPeriod: The fast EMA period
slowPeriod: The slow EMA period'''
self.fastPeriod = fastPeriod
self.slowPeriod = slowPeriod
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.Fast.IsReady and symbolData.Slow.IsReady and data.Bars.ContainsKey(symbolData.Symbol):
if data[symbolData.Symbol] is not None:
if algorithm.Portfolio[symbolData.Symbol].IsLong and symbolData.bull_insight == True:
if data[symbolData.Symbol].Low < symbolData.bull_SL_entry and symbolData.bull_insight_exp != data.Time:
symbolData.bull_insight = False
insights.append(Insight.Price(symbolData.Symbol,symbolData.bull_insight_exp - data.Time , InsightDirection.Flat, 0, 0, None))
algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " hit stoploss: " + str(symbolData.bull_SL_entry) + " low: " +str(data[symbolData.Symbol].Low ))
elif data[symbolData.Symbol].Close > symbolData.bull_PT_entry and symbolData.bull_insight_exp != data.Time:
symbolData.bull_insight = False
insights.append(Insight.Price(symbolData.Symbol,symbolData.bull_insight_exp - data.Time , InsightDirection.Flat, 0, 0, None))
algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " hit price_target: " + str(symbolData.bull_PT_entry) + " close: " +str(data[symbolData.Symbol].Close))
elif symbolData.bull_insight_exp <= data.Time:
symbolData.bull_insight = False
algorithm.Debug( str(algorithm.Time) + "Bull Exit " + str(symbolData.Symbol) + " insight expired: " + str(symbolData.bull_PT_entry) + " close: " +str(data[symbolData.Symbol].Close))
if algorithm.Portfolio[symbolData.Symbol].IsShort and symbolData.bear_insight == True:
if data[symbolData.Symbol].High > symbolData.bear_SL_entry and symbolData.bear_insight_exp != data.Time:
symbolData.bear_insight = False
insights.append(Insight.Price(symbolData.Symbol,symbolData.bear_insight_exp - data.Time, InsightDirection.Flat, 0, 0, None))
algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " hit stoploss: " + str(symbolData.bear_SL_entry) + " high: " +str(data[symbolData.Symbol].High ))
elif data[symbolData.Symbol].Close < symbolData.bear_PT_entry and symbolData.bear_insight_exp != algorithm.Time:
symbolData.bear_insight = False
insights.append(Insight.Price(symbolData.Symbol,symbolData.bear_insight_exp - data.Time, InsightDirection.Flat, 0, 0, None))
algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " hit price_target: " + str(symbolData.bear_PT_entry) + " close: " +str(data[symbolData.Symbol].Close))
elif symbolData.bear_insight_exp <= algorithm.Time:
symbolData.bear_insight = False
algorithm.Debug( str(algorithm.Time) + "Bear Exit " + str(symbolData.Symbol) + " insight expired: " + str(symbolData.bear_PT_entry) + " close: " +str(data[symbolData.Symbol].Close))
if symbolData.FastIsOverSlow:
if symbolData.Slow > symbolData.Fast:
close = data[symbolData.Symbol].Close
symbolData.bear_insight_exp = data.Time + self.predictionInterval
symbolData.bear_PT_entry = .93*close
symbolData.bear_SL_entry = 1.03*close
symbolData.bear_insight = True
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down))
elif symbolData.SlowIsOverFast:
if symbolData.Fast > symbolData.Slow:
close = data[symbolData.Symbol].Close
symbolData.bull_insight_exp = data.Time + self.predictionInterval
symbolData.bull_PT_entry = 1.08*close
symbolData.bull_SL_entry = .97*close
symbolData.bull_insight = True
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up))
symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
# create fast/slow EMAs
symbolData = SymbolData(added)
symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution)
symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
# a security that was already initialized was re-added, reset the indicators
symbolData.Fast.Reset()
symbolData.Slow.Reset()
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security):
self.Security = security
self.Symbol = security.Symbol
self.Fast = None
self.Slow = None
self.bull_PT_entry = None
self.bear_PT_entry = None
self.bull_SL_entry = None
self.bear_SL_entry = None
self.bear_insight_exp =None
self.bull_insight_exp =None
self.bull_insight = False
self.bear_insight = False
# True if the fast is above the slow, otherwise false.
# This is used to prevent emitting the same signal repeatedly
self.FastIsOverSlow = False
@property
def SlowIsOverFast(self):
return not self.FastIsOverSlow