| Overall Statistics |
|
Total Trades 233 Average Win 0.04% Average Loss -0.05% Compounding Annual Return -0.731% Drawdown 1.800% Expectancy -0.136 Net Profit -0.749% Sharpe Ratio -0.578 Probabilistic Sharpe Ratio 4.659% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.85 Alpha -0.009 Beta 0.016 Annual Standard Deviation 0.013 Annual Variance 0 Information Ratio -1.205 Tracking Error 0.117 Treynor Ratio -0.458 Total Fees $257.65 |
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Selection import *
from HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
from MeanVarianceOptimizationPortfolioConstructionModel import MeanVarianceOptimizationPortfolioConstructionModel
import numpy as np
import pandas as pd
from scipy.optimize import minimize
class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework):
'''Mean Variance Optimization Algorithm.'''
def Initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2017, 4, 1) #Set Start Date
self.SetEndDate(2018, 4, 9) #Set End Date
self.SetCash(100000) #Set Strategy Cash
tickers = ['IWD', 'MTUM', 'IWN', 'IWM', 'EFA', 'EEM', 'IEF', 'SPY', 'LQD', 'TLT', 'DBC', 'GLD', 'VNQ']
symbols = [ Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in tickers ]
# set algorithm framework models
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
self.SetAlpha( HistoricalReturnsAlphaModel(resolution = Resolution.Daily) )
self.SetPortfolioConstruction( MeanVarianceOptimizationPortfolioConstructionModel(portfolioBias = PortfolioBias.Long) )
self.SetExecution( ImmediateExecutionModel() )
self.SetRiskManagement( NullRiskManagementModel() )
#def OnOrderEvent(self, orderEvent):
# if orderEvent.Status == OrderStatus.Filled:
# self.Debug(orderEvent.ToString())
def maximum_sharpe_ratio(self, returns):
'''Maximum Sharpe Ratio optimization method'''
# Objective function
fun = lambda weights: -self.sharpe_ratio(returns, weights)
# Constraint #1: The weights can be negative, which means investors can short a security.
constraints = [{'type': 'eq', 'fun': lambda w: np.sum(w) - 1}]
size = returns.columns.size
x0 = np.array(size * [1. / size])
bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size))
opt = minimize(fun, # Objective function
x0, # Initial guess
method='SLSQP', # Optimization method: Sequential Least SQuares Programming
bounds = bounds, # Bounds for variables
constraints = constraints) # Constraints definition
weights = pd.Series(opt['x'], index = returns.columns)
return opt, weights
def sharpe_ratio(self, returns, weights):
annual_return = np.dot(np.matrix(returns.mean()), np.matrix(weights).T).item()
annual_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov(), weights)))
return annual_return/annual_volatility# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm.Framework.Alphas import *
from datetime import timedelta
class HistoricalReturnsAlphaModel:
'''Uses Historical returns to create insights.'''
def __init__(self, *args, **kwargs):
'''Initializes a new default instance of the HistoricalReturnsAlphaModel class.
Args:
lookback(int): Historical return lookback period
resolution: The resolution of historical data'''
self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback)
self.symbolDataBySymbol = {}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.CanEmit:
direction = InsightDirection.Flat
magnitude = symbolData.Return
if magnitude > 0: direction = InsightDirection.Up
if magnitude < 0: direction = InsightDirection.Down
insights.append(Insight.Price(symbol, self.predictionInterval, direction, 0.00001, None))
if algorithm.Time.day == 1:
return insights
else:
return []
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = SymbolData(symbol, self.lookback)
self.symbolDataBySymbol[symbol] = symbolData
symbolData.RegisterIndicators(algorithm, self.resolution)
symbolData.WarmUpIndicators(history.loc[ticker])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback):
self.Symbol = symbol
self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback)
self.Consolidator = None
self.previous = 0
def RegisterIndicators(self, algorithm, resolution):
self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator)
def RemoveConsolidators(self, algorithm):
if self.Consolidator is not None:
algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.ROC.Update(tuple.Index, tuple.close)
@property
def Return(self):
return float(self.ROC.Current.Value)
@property
def CanEmit(self):
if self.previous == self.ROC.Samples:
return False
self.previous = self.ROC.Samples
return self.ROC.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer
from datetime import timedelta
import numpy as np
import pandas as pd
### <summary>
### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory.
### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns.
### </summary>
class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel):
def __init__(self,
rebalancingParam = Resolution.Daily,
portfolioBias = PortfolioBias.LongShort,
lookback = 1,
period = 63,
resolution = Resolution.Daily,
targetReturn = 0.02,
optimizer = None):
"""Initialize the model
Args:
rebalancingParam: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.
portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)
lookback(int): Historical return lookback period
period(int): The time interval of history price to calculate the weight
resolution: The resolution of the history price
optimizer(class): Method used to compute the portfolio weights"""
self.lookback = lookback
self.period = period
self.resolution = resolution
self.portfolioBias = portfolioBias
self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0)
lower = 0 if portfolioBias == PortfolioBias.Long else -1
upper = 0 if portfolioBias == PortfolioBias.Short else 1
self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer
self.symbolDataBySymbol = {}
# If the argument is an instance of Resolution or Timedelta
# Redefine rebalancingFunc
rebalancingFunc = rebalancingParam
if isinstance(rebalancingParam, int):
rebalancingParam = Extensions.ToTimeSpan(rebalancingParam)
if isinstance(rebalancingParam, timedelta):
rebalancingFunc = lambda dt: dt + rebalancingParam
if rebalancingFunc:
self.SetRebalancingFunc(rebalancingFunc)
def ShouldCreateTargetForInsight(self, insight):
if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0:
return False
symbolData = self.symbolDataBySymbol.get(insight.Symbol)
if insight.Magnitude is None:
self.algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.'))
return False
symbolData.Add(self.Algorithm.Time, insight.Magnitude)
return True
def DetermineTargetPercent(self, activeInsights):
"""
Will determine the target percent for each insight
Args:
Returns:
"""
targets = {}
symbols = [insight.Symbol for insight in activeInsights]
# Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame
returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols }
returns = pd.DataFrame(returns)
if returns.empty:
return targets
# The portfolio optimizer finds the optional weights for the given data
weights = self.optimizer.Optimize(returns)
weights = pd.Series(weights, index = returns.columns)
# Create portfolio targets from the specified insights
for insight in activeInsights:
weight = weights[str(insight.Symbol)]
# don't trust the optimizer
if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias:
weight = 0
targets[insight] = weight
return targets
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
super().OnSecuritiesChanged(algorithm, changes)
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
symbolData.Reset()
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback * self.period, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period)
symbolData.WarmUpIndicators(history.loc[ticker])
self.symbolDataBySymbol[symbol] = symbolData
class MeanVarianceSymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback, period):
self.symbol = symbol
self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback)
self.roc.Updated += self.OnRateOfChangeUpdated
self.window = RollingWindow[IndicatorDataPoint](period)
def Reset(self):
self.roc.Updated -= self.OnRateOfChangeUpdated
self.roc.Reset()
self.window.Reset()
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.roc.Update(tuple.Index, tuple.close)
def OnRateOfChangeUpdated(self, roc, value):
if roc.IsReady:
self.window.Add(value)
def Add(self, time, value):
item = IndicatorDataPoint(self.symbol, time, value)
self.window.Add(item)
@property
def Return(self):
return pd.Series(
data = [(1 + float(x.Value))**252 - 1 for x in self.window],
index = [x.EndTime for x in self.window])
@property
def IsReady(self):
return self.window.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
class MonthlyExecutionModel(ExecutionModel):
def __init__(self):
self.targetsCollection = PortfolioTargetCollection()
def Execute(self, algorithm, targets):
self.targetsCollection.AddRange(targets)
for target in self.targetsCollection.OrderByMarginImpact(algorithm):
open_quantity = sum([x.Quantity for x in algorithm.Transactions.GetOpenOrders(target.Symbol)])
existing = algorithm.Securities[target.Symbol].Holdings.Quantity + open_quantity
quantity = target.Quantity - existing
if quantity != 0:
if algorithm.Time.day == 1 and algorithm.Time.hour > 9 and algorithm.Time.minute > 30:
algorithm.MarketOrder(target.Symbol, quantity)
if quantity > 1:
algorithm.Log('Order placed: ' + str(target.Symbol) + ' x ' + str(quantity))
self.targetsCollection.ClearFulfilled(algorithm)