| Overall Statistics |
|
Total Trades 33 Average Win 4.70% Average Loss -1.33% Compounding Annual Return 3.788% Drawdown 21.700% Expectancy 0.809 Net Profit 13.786% Sharpe Ratio 0.286 Loss Rate 60% Win Rate 40% Profit-Loss Ratio 3.52 Alpha 0.034 Beta 0.056 Annual Standard Deviation 0.141 Annual Variance 0.02 Information Ratio -0.4 Tracking Error 0.181 Treynor Ratio 0.716 Total Fees $203.01 |
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Statistics;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem.
/// </summary>
public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm
{
private string[] _symbols = new string[]
{
// Using Meb Faber's GTAA paper assets:
"SPY", //
"EFA", //
"TIP", //
"GSG", //
"VNQ" //
// Find more symbols here: http://quantconnect.com/data
};
private const double _targetReturn = 0.1;
private const double _riskFreeRate = 0.01;
private double _lagrangeMultiplier;
private double _portfolioRisk;
private Matrix<double> Sigma;
private List<SymbolData> SymbolDataList;
public Vector<double> DiscountMeanVector
{
get
{
if (SymbolDataList == null)
{
return null;
}
return
Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray()) -
Vector<double>.Build.Dense(SymbolDataList.Count, _riskFreeRate);
}
}
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetCash(100000); //Set Strategy Cash
SetStartDate(2013, 1, 1); //Set Start Date
SetEndDate(DateTime.Now.AddDays(-1)); //Set End Date
SymbolDataList = new List<SymbolData>();
foreach (var symbol in _symbols)
{
AddEquity(symbol, Resolution.Daily);
SymbolDataList.Add(new SymbolData(symbol, History(symbol, 200, Resolution.Daily)));
}
Schedule.On(DateRules.MonthStart(), TimeRules.At(new TimeSpan(12, 0, 0)), () =>
{
ComputeWeights();
foreach (var symbolData in SymbolDataList.OrderBy(x => x.Weight))
{
SetHoldings(symbolData.Symbol, symbolData.Weight);
Debug(Time.ToShortDateString() + " Purchased Stock: " + symbolData);
}
});
//ComputePortfolioRisk();
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
foreach (var symbolData in SymbolDataList)
{
if(data.ContainsKey(symbolData.Symbol))
{
symbolData.Update(data[symbolData.Symbol]);
}
}
}
/// <summary>
/// Computes Lagrange Multiplier
/// </summary>
private void ComputeLagrangeMultiplier()
{
var denominatorMatrix = DiscountMeanVector * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix();
var denominator = denominatorMatrix.ToArray().First();
_lagrangeMultiplier = denominator == 0 ? 0.0 : (_targetReturn - _riskFreeRate) / denominator;
}
/// <summary>
/// Computes weight for each risky asset
/// </summary>
private void ComputeWeights()
{
// Diagonal Matrix with each security risk (standard deviation)
var S = Matrix<double>.Build.DenseOfDiagonalArray(SymbolDataList.Select(x => (double)x.Risk).ToArray());
// Computes Correlation Matrix (using Math.NET Numerics Statistics)
var allHistoryBars = new List<double[]>();
SymbolDataList.ForEach(x => allHistoryBars.Add(x.History));
var R = Correlation.PearsonMatrix(allHistoryBars);
// Computes Covariance Matrix (using Math.NET Numerics Linear Algebra)
Sigma = S * R * S;
ComputeLagrangeMultiplier();
var weights = _lagrangeMultiplier * Sigma.Inverse() * DiscountMeanVector.ToColumnMatrix();
for (var i = 0; i < weights.RowCount; i++)
{
SymbolDataList[i].SetWeight(weights.ToArray()[i, 0]);
}
}
/// <summary>
/// Computes Portfolio Risk
/// </summary>
private void ComputePortfolioRisk()
{
var weights = Vector<double>.Build.DenseOfArray(SymbolDataList.Select(x => (double)x.Return).ToArray());
var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix();
_portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First());
Log(string.Format("Lagrange Multiplier: {0,7:F4}", _lagrangeMultiplier));
Log(string.Format("Portfolio Risk: {0,7:P2} ", _portfolioRisk));
}
/// <summary>
/// Symbol Data class to store security data (Return, Risk, Weight)
/// </summary>
class SymbolData
{
private RateOfChange _roc;
private RollingWindow<double> _rollingHistory;
private SimpleMovingAverage _sma;
private StandardDeviation _std;
public Symbol Symbol { get; private set; }
public decimal Return { get { return _sma.Current; } }
public decimal Risk { get { return _std.Current; } }
public decimal Weight { get; private set; }
public double[] History
{
get
{
return _rollingHistory.Select(x => x).ToArray();
}
}
public SymbolData(Symbol symbol, IEnumerable<BaseData> history)
{
Symbol = symbol;
Weight = 0m;
_roc = new RateOfChange(2);
_sma = new SimpleMovingAverage(200).Of(_roc);
_std = new StandardDeviation(200).Of(_roc);
_rollingHistory = new RollingWindow<double>(200);
foreach (var data in history)
{
Update(data);
}
}
public void Update(BaseData data)
{
if(data == null)
{
return;
}
else
{
_roc.Update(data.Time, data.Value);
_rollingHistory.Add((double)data.Value);
}
}
public void SetWeight(double value)
{
Weight = value.IsNaNOrZero() ? 0m : (decimal)value;
}
public override string ToString()
{
return string.Format("{0}: {1,10:P2}\t{2,10:P2}\t{3,10:P2}", Symbol.Value, Weight, Return, Risk);
}
}
}
}