| Overall Statistics |
|
Total Trades 2605 Average Win 0.09% Average Loss -0.05% Compounding Annual Return 12.855% Drawdown 31.700% Expectancy 1.043 Net Profit 163.394% Sharpe Ratio 0.778 Probabilistic Sharpe Ratio 20.972% Loss Rate 26% Win Rate 74% Profit-Loss Ratio 1.76 Alpha 0.134 Beta -0.127 Annual Standard Deviation 0.151 Annual Variance 0.023 Information Ratio -0.055 Tracking Error 0.226 Treynor Ratio -0.924 Total Fees $2670.80 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2020 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import statistics as stat
import pickle
from collections import deque
class DynamicCalibratedGearbox(QCAlgorithm):
def Initialize(self):
### IMPORTANT: FOR USERS RUNNING THIS ALGORITHM IN LIVE TRADING,
### RUN THE BACKTEST ONCE
self.tech_ROA_key = 'TECH_ROA'
# we need 3 extra years to warmup our ROA values
self.SetStartDate(2012, 9, 1)
self.SetEndDate(2020, 9, 1)
self.SetCash(100000) # Set Strategy Cash
self.SetBrokerageModel(AlphaStreamsBrokerageModel())
self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(days=31)))
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time:None))
self.AddUniverseSelection(
FineFundamentalUniverseSelectionModel(self.CoarseFilter, self.FineFilter)
)
self.UniverseSettings.Resolution = Resolution.Daily
self.curr_month = -1
# store ROA of tech stocks
self.tech_ROA = {}
self.symbols = None
if self.LiveMode and not self.ObjectStore.ContainsKey(self.tech_ROA_key):
self.Quit('QUITTING: USING LIVE MOVE WITHOUT TECH_ROA VALUES IN OBJECT STORE')
self.quarters = 0
def OnEndOfAlgorithm(self):
self.Log('Algorithm End')
self.SaveData()
def SaveData(self):
'''
Saves the tech ROA data to ObjectStore
'''
# Symbol objects aren't picklable, hence why we use the ticker string
tech_ROA = {symbol.Value:ROA for symbol, ROA in self.tech_ROA.items()}
self.ObjectStore.SaveBytes(self.tech_ROA_key, pickle.dumps(tech_ROA))
def CoarseFilter(self, coarse):
# load data from ObjectStore
if len(self.tech_ROA) == 0 and self.ObjectStore.ContainsKey(self.tech_ROA_key):
tech_ROA = self.ObjectStore.ReadBytes(self.tech_ROA_key)
tech_ROA = pickle.loads(bytearray(tech_ROA))
self.tech_ROA = {Symbol.Create(ticker, SecurityType.Equity, Market.USA):ROA for ticker, ROA in tech_ROA.items()}
return list(self.tech_ROA.keys())
if self.curr_month == self.Time.month:
return Universe.Unchanged
self.curr_month = self.Time.month
# we only want to update our ROA values every three months
if self.Time.month % 3 != 1:
return Universe.Unchanged
self.quarters += 1
return [c.Symbol for c in coarse if c.HasFundamentalData]
def FineFilter(self, fine):
# book value == FinancialStatements.BalanceSheet.NetTangibleAssets (book value and NTA are synonyms)
# BM (Book-to-Market) == book value / MarketCap
# ROA == OperationRatios.ROA
# CFROA == FinancialStatements.CashFlowStatement.OperatingCashFlow / FinancialStatements.BalanceSheet.TotalAssets
# R&D to MktCap == FinancialStatements.IncomeStatement.ResearchAndDevelopment / MarketCap
# CapEx to MktCap == FinancialStatements.CashFlowStatement.CapExReported / MarketCap
# Advertising to MktCap == FinancialStatements.IncomeStatement.SellingGeneralAndAdministration / MarketCap
# note: this parameter may be slightly higher than pure advertising costs
tech_securities = [f for f in fine if f.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology and
f.OperationRatios.ROA.ThreeMonths]
for security in tech_securities:
# we use deques instead of RWs since deques are picklable
symbol = security.Symbol
if symbol not in self.tech_ROA:
# 3 years * 4 quarters = 12 quarters of data
self.tech_ROA[symbol] = deque(maxlen=12)
self.tech_ROA[symbol].append(security.OperationRatios.ROA.ThreeMonths)
if self.LiveMode:
# this ensures we don't lose new data from an algorithm outage
self.SaveData()
# we want to rebalance in the fourth month after the (fiscal) year ends
# so that we have the most recent quarter's data
if self.Time.month != 4 or (self.quarters < 12 and not self.LiveMode):
return Universe.Unchanged
# make sure our stocks has these fundamentals
tech_securities = [x for x in tech_securities if x.OperationRatios.ROA.OneYear and
x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths and
x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and
x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths and
x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths and
x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths and
x.MarketCap]
# compute the variance of the ROA for each tech stock
tech_VARROA = {symbol:stat.variance(ROA) for symbol, ROA in self.tech_ROA.items() if len(ROA) == ROA.maxlen}
if len(tech_VARROA) < 2:
return Universe.Unchanged
tech_VARROA_median = stat.median(tech_VARROA.values())
# we will now map tech Symbols to various fundamental ratios,
# and compute the median for each ratio
# ROA 1-year
tech_ROA1Y = {x.Symbol:x.OperationRatios.ROA.OneYear for x in tech_securities}
tech_ROA1Y_median = stat.median(tech_ROA1Y.values())
# Cash Flow ROA
tech_CFROA = {x.Symbol: (
x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths
/ x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths
) for x in tech_securities}
tech_CFROA_median = stat.median(tech_CFROA.values())
# R&D to MktCap
tech_RD2MktCap = {x.Symbol: (
x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_RD2MktCap_median = stat.median(tech_RD2MktCap.values())
# CapEx to MktCap
tech_CaPex2MktCap = {x.Symbol: (
x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_CaPex2MktCap_median = stat.median(tech_CaPex2MktCap.values())
# Advertising to MktCap
tech_Ad2MktCap = {x.Symbol: (
x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_Ad2MktCap_median = stat.median(tech_Ad2MktCap.values())
# sort fine by book-to-market ratio, get lower quintile
has_book = [f for f in fine if f.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths and f.MarketCap]
sorted_by_BM = sorted(has_book, key=lambda x: x.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths / x.MarketCap)[:len(has_book)//4]
# choose tech stocks from lower quintile
tech_symbols = [f.Symbol for f in sorted_by_BM if f in tech_securities]
ratioDicts_medians = [(tech_ROA1Y, tech_ROA1Y_median),
(tech_CFROA, tech_CFROA_median), (tech_RD2MktCap, tech_RD2MktCap_median),
(tech_CaPex2MktCap, tech_CaPex2MktCap_median), (tech_Ad2MktCap, tech_Ad2MktCap_median)]
def compute_g_score(symbol):
g_score = 0
if tech_CFROA[symbol] > tech_ROA1Y[symbol]:
g_score += 1
if symbol in tech_VARROA and tech_VARROA[symbol] < tech_VARROA_median:
g_score += 1
for ratio_dict, median in ratioDicts_medians:
if symbol in ratio_dict and ratio_dict[symbol] > median:
g_score += 1
return g_score
# compute g-scores for each symbol
g_scores = {symbol:compute_g_score(symbol) for symbol in tech_symbols}
return [symbol for symbol, g_score in g_scores.items() if g_score >= 5]