| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 264.809% Drawdown 2.200% Expectancy 0 Net Profit 0% Sharpe Ratio 4.411 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.002 Beta 1 Annual Standard Deviation 0.193 Annual Variance 0.037 Information Ratio 5.031 Tracking Error 0 Treynor Ratio 0.851 Total Fees $3.14 |
using MathNet.Numerics.LinearAlgebra;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Basic template algorithm simply initializes the date range and cash
/// </summary>
public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm
{
private const double _targetReturn = 0.1;
private const double _riskFreeRate = 0.01;
private double _lagrangeMultiplier;
private double _portfolioRisk;
private Dictionary<string, double> _mean;
private Dictionary<string, double> _stddev;
private Dictionary<string, double> _weights;
private Matrix<double> R;
private Matrix<double> S;
private Matrix<double> Sigma;
private Vector<double> _discountMeanVector;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// Find more symbols here: http://quantconnect.com/data
AddEquity("SPY", Resolution.Second);
_mean = new Dictionary<string, double>
{
{"A", 0.04 },
{"B", 0.08 },
{"C", 0.12 },
{"D", 0.15 },
};
_stddev = new Dictionary<string, double>
{
{"A", 0.07 },
{"B", 0.12 },
{"C", 0.18 },
{"D", 0.26 },
};
_weights = _mean.ToDictionary(k => k.Key, v => 0.0);
S = Matrix<double>.Build.DenseOfDiagonalArray(_stddev.Values.ToArray());
R = Matrix<double>.Build.DenseOfColumnMajor(4, 4, new[]
{
1.0, 0.2, 0.5, 0.3,
0.2, 1.0, 0.7, 0.4,
0.5, 0.7, 1.0, 0.9,
0.3, 0.4, 0.9, 1.0
});
Sigma = S * R * S;
ComputeLagrangeMultiplier();
ComputeWeights();
ComputePortfolioRisk();
Log(string.Format("Lagrange Multiplier: {0,7:F4}", _lagrangeMultiplier));
Log(string.Format("Portfolio Risk: {0,7:P2} ", _portfolioRisk));
foreach (var symbol in _mean.Keys)
{
Log(string.Format("{0}: {1,10:P2}\t{2,7:P2}\t{3,7:P2}", symbol, _weights[symbol], _mean[symbol], _stddev[symbol]));
}
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
if (!Portfolio.Invested)
{
SetHoldings("SPY", 1);
Debug("Purchased Stock");
}
}
private void ComputeLagrangeMultiplier()
{
_discountMeanVector =
Vector<double>.Build.DenseOfArray(_mean.Values.ToArray()) -
Vector<double>.Build.Dense(_mean.Count, _riskFreeRate);
var denominatorMatrix = _discountMeanVector * Sigma.Inverse() * _discountMeanVector.ToColumnMatrix();
_lagrangeMultiplier = (_targetReturn - _riskFreeRate) / denominatorMatrix.ToArray().First();
}
private void ComputeWeights()
{
var weights = _lagrangeMultiplier * Sigma.Inverse() * _discountMeanVector.ToColumnMatrix();
for (var i = 0; i < weights.RowCount; i++)
{
var kvp = _weights.ElementAt(i);
_weights[kvp.Key] = weights.ToArray()[i, 0];
}
}
private void ComputePortfolioRisk()
{
var weights = Vector<double>.Build.DenseOfArray(_weights.Values.ToArray());
var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix();
_portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First());
}
}
}