| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.538 Tracking Error 0.147 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports
from AlgorithmImports import *
import matplotlib as plt
from collections import deque
# endregion
class MuscularFluorescentOrangeGoat(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetCash(100000)
self.ticker = self.AddEquity("SPY", Resolution.Daily)
self.window = 10
self.prices = deque(maxlen=self.window)
self.dates = deque(maxlen=self.window)
self.stockPlot = Chart('Stock Plot')
self.stockPlot.AddSeries(Series('Price', SeriesType.Line))
self.stockPlot.AddSeries(Series('High', SeriesType.Scatter))
self.stockPlot.AddSeries(Series('Low', SeriesType.Scatter))
self.AddChart(self.stockPlot)
def OnData(self, data: Slice):
self.Plot('Stock Plot', 'Price', data[self.ticker.Symbol].Close)
self.prices.appendleft(data[self.ticker.Symbol].Close)
self.dates.appendleft(data.Time)
if len(self.prices) == self.window:
lag_high = max(self.prices)
self.Plot('Stock Plot', 'High', lag_high)
lag_low = min(self.prices)
self.Plot('Stock Plot', 'Low', lag_low)
self.prices = deque(maxlen=self.window)