| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -8.769 Tracking Error 0.22 Treynor Ratio 0 Total Fees $0.00 |
from collections import deque
from datetime import datetime, timedelta
from numpy import sum
### Demonstrates how to create a custom indicator and register it for automatic updated
class CustomIndicatorAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013,10,7)
self.SetEndDate(2013,10,11)
self.AddEquity("SPY", Resolution.Second)
# Create a QuantConnect indicator and a python custom indicator for comparison
self.sma = self.SMA("SPY", 60, Resolution.Minute)
self.custom = CustomSimpleMovingAverage('custom', 60)
self.RegisterIndicator("SPY", self.custom, Resolution.Minute)
self.ext = IndicatorExtensions.MAX(self.custom, 1)
def OnData(self, data):
if self.Time.second == 0 and self.ext.IsReady:
self.Plot("SMA", "Value", self.sma.Current.Value)
self.Plot("Custom SMA", "Value", self.custom.Value)
self.Plot("Extended", "Value", self.ext.Current.Value)
# Python implementation of SimpleMovingAverage.
# Represents the traditional simple moving average indicator (SMA).
class CustomSimpleMovingAverage(PythonIndicator):
def __init__(self, name, period):
self.Name = name
self.Time = datetime.min
self.Value = 0
self.queue = deque(maxlen=period)
# Update method is mandatory
def Update(self, input):
self.queue.appendleft(input.Close)
count = len(self.queue)
self.Time = input.EndTime
self.Value = sum(self.queue) / count
return count == self.queue.maxlen