| Overall Statistics |
|
Total Orders 266 Average Win 2.32% Average Loss -2.33% Compounding Annual Return 23.219% Drawdown 28.700% Expectancy 0.196 Net Profit 69.258% Sharpe Ratio 0.761 Sortino Ratio 0.634 Probabilistic Sharpe Ratio 32.344% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.00 Alpha 0.036 Beta 0.733 Annual Standard Deviation 0.224 Annual Variance 0.05 Information Ratio -0.07 Tracking Error 0.181 Treynor Ratio 0.233 Total Fees $2200.20 Estimated Strategy Capacity $520000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 28.74% |
#region imports
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Globalization;
using System.Drawing;
using QuantConnect;
using System.Text.RegularExpressions;
using QuantConnect.Algorithm.Framework;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Selection;
using QuantConnect.Parameters;
using QuantConnect.Benchmarks;
using QuantConnect.Brokerages;
using QuantConnect.Util;
using QuantConnect.Interfaces;
using QuantConnect.Algorithm;
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Custom;
using QuantConnect.DataSource;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Notifications;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
using QuantConnect.Orders.Fills;
using QuantConnect.Orders.Slippage;
using QuantConnect.Scheduling;
using QuantConnect.Securities;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities.Future;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Forex;
using QuantConnect.Securities.Crypto;
using QuantConnect.Securities.Interfaces;
using QuantConnect.Storage;
using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm;
using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm;
#endregion
public class BrainSentimentDataAlgorithm : QCAlgorithm
{
private Symbol _symbol;
private Symbol _datasetSymbol;
private decimal? _latestSentimentValue;
private int _targetHoldings = 0;
public override void Initialize()
{
SetStartDate(2019, 1, 1);
SetEndDate(2021, 7, 8);
SetCash(100000);
// Requesting data
_symbol = AddEquity("AAPL", Resolution.Daily).Symbol;
_datasetSymbol = AddData<BrainSentimentIndicator30Day>(_symbol).Symbol;
/// Historical data
var history = History<BrainSentimentIndicator30Day>(_datasetSymbol, 100, Resolution.Daily);
Debug($"We got {history.Count()} items from our history request for {_datasetSymbol}");
// Warm up historical sentiment values
var previousSentimentValues = history.Select(x => x.Sentiment);
foreach (var sentiment in previousSentimentValues)
{
Update(sentiment);
}
}
private void Update(decimal sentiment)
{
if (_latestSentimentValue != null)
{
_targetHoldings = sentiment > _latestSentimentValue ? 1 : 0;
}
_latestSentimentValue = sentiment;
}
public override void OnData(Slice slice)
{
if (slice.ContainsKey(_datasetSymbol))
{
var sentiment = slice[_datasetSymbol].Sentiment;
Update(sentiment);
}
if (!(slice.ContainsKey(_symbol) && slice[_symbol] != null))
{
return;
}
if (_targetHoldings==1 != Portfolio.Invested)
{
SetHoldings(_symbol, _targetHoldings);
}
}
}