| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000.00 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 1.653 Tracking Error 0.049 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports
from AlgorithmImports import *
# endregion
class VirtualBlackParrot(QCAlgorithm):
def initialize(self):
self.set_start_date(2024, 6, 1)
self.set_cash(100000)
self.set_brokerage_model(BrokerageName.OANDA_BROKERAGE, AccountType.MARGIN)
self.forex_tickers = ["EURUSD"]
self.init = {}
for ticker in self.forex_tickers:
self.add_forex(ticker, Resolution.MINUTE, market=Market.OANDA)
h4_consolidator = QuoteBarConsolidator(self._custom_forex_h4)
h4_consolidator.data_consolidated += self.four_hour_consolidated
self.subscription_manager.add_consolidator(ticker, h4_consolidator)
self.init[ticker] = False
self.set_warmup(timedelta(hours=120))
def _custom_forex_h4(self, dt):
if all([value for value in self.init.values()]):
# after the first bar, consolidate every 4 hours
return CalendarInfo(dt, timedelta(hours=4))
else:
# first bar will consolidate at current day 17:00
return CalendarInfo(dt, dt.replace(hour=17, minute=0, second=0) - dt)
def four_hour_consolidated(self, sender, bar):
ticker = bar.symbol.value
self.init[ticker] = True
if self.is_warming_up:
return
self.debug(f"{self.time} - {ticker} H4 Consolidated. EndTime: {bar.EndTime}")
def on_data(self, data: Slice):
if self.is_warming_up:
return
return