# https://quantpedia.com/strategies/earnings-quality-factor/
#
# The investment universe consists of all non-financial stocks from NYSE, Amex and Nasdaq. Big stocks are defined as the largest stocks
# that make up 90% of the total market cap within the region, while small stocks make up the remaining 10% of the market cap. Investor defines
# breakpoints by the 30th and 70th percentiles of the multiple “Earnings Quality” ratios between large caps and small caps.
# The first “Earnings Quality” ratio is defined by cash flow relative to reported earnings. The high-quality earnings firms are characterized
# by high cash flows (relative to reported earnings) while the low-quality firms are characterized by high reported earnings (relative to cash flow).
# The second factor is based on return on equity (ROE) to exploit the well-documented “profitability anomaly” by going long high-ROE firms
# (top 30%) and short low-ROE firms (bottom 30%). The third ratio – CF/A (cash flow to assets) factor goes long firms with high cash flow to total assets.
# The fourth ratio – D/A (debt to assets) factor goes long firms with low leverage and short firms with high leverage.
# The investor builds a scored composite quality metric by computing the percentile score of each stock on each of the four quality metrics
# (where “good” quality has a high score, so ideally a stock has low accruals, low leverage, high ROE, and high cash flow) and then add up
# the percentiles to get a score for each stock from 0 to 400. He then forms the composite factor by going long the top 30% of small-cap
# stocks and also large-cap stocks and short the bottom 30% of the small-cap stocks and also large-cap stocks and cap-weighting individual
# stocks within the portfolios. The final factor portfolio is formed at the end of each June and is rebalanced yearly.
#
# QC implementation changes:
# - Universe consists of top 3000 US non-financial stocks by market cap from NYSE, AMEX and NASDAQ.
class EarningsQualityFactor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.coarse_count = 3000
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.accruals_data = {}
self.long = []
self.short = []
self.data = {}
self.selection_flag = True
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetLeverage(10)
security.SetFeeModel(CustomFeeModel(self))
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
return selected
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and \
x.CompanyReference.IndustryTemplateCode != "B" and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE")) and \
x.FinancialStatements.BalanceSheet.CurrentAssets.Value != 0 and \
x.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value != 0 and \
x.FinancialStatements.BalanceSheet.CurrentLiabilities.Value != 0 and \
x.FinancialStatements.BalanceSheet.CurrentDebt.Value != 0 and \
x.FinancialStatements.IncomeStatement.DepreciationAndAmortization.Value != 0 and \
x.FinancialStatements.BalanceSheet.GrossPPE.Value != 0 and \
x.FinancialStatements.IncomeStatement.TotalRevenueAsReported.Value != 0 and \
x.FinancialStatements.CashFlowStatement.OperatingCashFlow.Value != 0 and \
x.EarningReports.BasicEPS.Value != 0 and \
x.EarningReports.BasicAverageShares.Value != 0 and \
x.OperationRatios.DebttoAssets.Value != 0 and \
x.OperationRatios.ROE.Value != 0
]
if len(fine) > self.coarse_count:
sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
top_by_market_cap = [x for x in sorted_by_market_cap[:self.coarse_count]]
else:
top_by_market_cap = fine
for stock in top_by_market_cap:
symbol = stock.Symbol
if symbol not in self.accruals_data:
# Data for previous year.
self.accruals_data[symbol] = None
# Accrual calc.
current_accruals_data = AcrrualsData(stock.FinancialStatements.BalanceSheet.CurrentAssets.Value, stock.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value,
stock.FinancialStatements.BalanceSheet.CurrentLiabilities.Value, stock.FinancialStatements.BalanceSheet.CurrentDebt.Value, stock.FinancialStatements.BalanceSheet.IncomeTaxPayable.Value,
stock.FinancialStatements.IncomeStatement.DepreciationAndAmortization.Value, stock.FinancialStatements.BalanceSheet.TotalAssets.Value,
stock.FinancialStatements.IncomeStatement.TotalRevenueAsReported.Value)
# There is not previous accruals data.
if not self.accruals_data[symbol]:
self.accruals_data[symbol] = current_accruals_data
continue
current_accruals = self.CalculateAccruals(current_accruals_data, self.accruals_data[symbol])
# cash flow to assets
CFA = stock.FinancialStatements.CashFlowStatement.OperatingCashFlow.Value / (stock.EarningReports.BasicEPS.Value * stock.EarningReports.BasicAverageShares.Value)
# debt to assets
DA = stock.OperationRatios.DebttoAssets.Value
# return on equity
ROE = stock.OperationRatios.ROE.Value
if symbol not in self.data:
self.data[symbol] = None
self.data[symbol] = StockData(current_accruals, CFA, DA, ROE)
self.accruals_data[symbol] = current_accruals_data
# Remove not updated symbols.
updated_symbols = [x.Symbol for x in top_by_market_cap]
not_updated = [x for x in self.data if x not in updated_symbols]
for symbol in not_updated:
del self.data[symbol]
del self.accruals_data[symbol]
return [x[0] for x in self.data.items()]
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Sort stocks by four factors respectively.
sorted_by_accruals = sorted(self.data.items(), key=lambda x: x[1].Accruals, reverse=True) # high score with low accrual
sorted_by_CFA = sorted(self.data.items(), key=lambda x: x[1].CFA) # high score with high CFA
sorted_by_DA = sorted(self.data.items(), key=lambda x: x[1].DA, reverse=True) # high score with low leverage
sorted_by_ROE = sorted(self.data.items(), key=lambda x: x[1].ROE) # high score with high ROE
score = {}
# Assign a score to each stock according to their rank with different factors.
for i, obj in enumerate(sorted_by_accruals):
score_accruals = i
score_CFA = sorted_by_CFA.index(obj)
score_DA = sorted_by_DA.index(obj)
score_ROE = sorted_by_ROE.index(obj)
score[obj[0]] = score_accruals + score_CFA + score_DA + score_ROE
sorted_by_score = sorted(score.items(), key = lambda x: x[1], reverse = True)
tercile = int(len(sorted_by_score) / 3)
long = [x[0] for x in sorted_by_score[:tercile]]
short = [x[0] for x in sorted_by_score[-tercile:]]
# Trade execution.
# NOTE: Skip year 2007 due to data error.
if self.Time.year == 2007:
self.Liquidate()
return
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable: # Prevent error message.
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable: # Prevent error message.
self.SetHoldings(symbol, -1 / len(short))
# Source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3188172
def CalculateAccruals(self, current_accrual_data, prev_accrual_data):
delta_assets = current_accrual_data.CurrentAssets - prev_accrual_data.CurrentAssets
delta_cash = current_accrual_data.CashAndCashEquivalents - prev_accrual_data.CashAndCashEquivalents
delta_liabilities = current_accrual_data.CurrentLiabilities - prev_accrual_data.CurrentLiabilities
delta_debt = current_accrual_data.CurrentDebt - prev_accrual_data.CurrentDebt
dep = current_accrual_data.DepreciationAndAmortization
total_assets_prev_year = prev_accrual_data.TotalAssets
acc = (delta_assets - delta_liabilities - delta_cash + delta_debt - dep) / total_assets_prev_year
return acc
def Selection(self):
if self.Time.month == 7:
self.selection_flag = True
class AcrrualsData():
def __init__(self, current_assets, cash_and_cash_equivalents, current_liabilities, current_debt, income_tax_payable,
depreciation_and_amortization, total_assets, sales):
self.CurrentAssets = current_assets
self.CashAndCashEquivalents = cash_and_cash_equivalents
self.CurrentLiabilities = current_liabilities
self.CurrentDebt = current_debt
self.IncomeTaxPayable = income_tax_payable
self.DepreciationAndAmortization = depreciation_and_amortization
self.TotalAssets = total_assets
self.Sales = sales
class StockData():
def __init__(self, accruals, cfa, da, roe):
self.Accruals = accruals
self.CFA = cfa
self.DA = da
self.ROE = roe
def MultipleLinearRegression(x, y):
x = np.array(x).T
x = sm.add_constant(x)
result = sm.OLS(endog=y, exog=x).fit()
return result
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))