Overall Statistics |
Total Trades 6001 Average Win 0.18% Average Loss -0.18% Compounding Annual Return 12.393% Drawdown 29.100% Expectancy 0.173 Net Profit 164.850% Sharpe Ratio 0.594 Probabilistic Sharpe Ratio 8.188% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 0.99 Alpha -0.027 Beta 1.143 Annual Standard Deviation 0.205 Annual Variance 0.042 Information Ratio -0.076 Tracking Error 0.107 Treynor Ratio 0.106 Total Fees $7691.89 |
from math import ceil,floor class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2009,1,2) # Set Start Date self.SetEndDate(2017,5,2) # Set End Date self.SetCash(50000) # Set Strategy Cash self.AddUniverseSelection( FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction) ) self.AddAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(30))) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time:None)) self.AddEquity("SPY") self.numberOfSymbols = 300 self.numberOfSymbolsFine = 10 self.num_portfolios = 6 self.curr_month = self.Time.month def CoarseSelectionFunction(self, coarse): if self.curr_month == self.Time.month: return Universe.Unchanged self.curr_month = self.Time.month CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData] sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.numberOfSymbols] return [i.Symbol for i in top] def FineSelectionFunction(self, fine): filtered_fine = [x for x in fine if x.EarningReports.TotalDividendPerShare.ThreeMonths and x.ValuationRatios.PriceChange1M and x.ValuationRatios.BookValuePerShare and x.ValuationRatios.FCFYield] sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.EarningReports.TotalDividendPerShare.ThreeMonths, reverse=True) sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=False) sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) sortedByfactor4 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) num_stocks = floor(len(filtered_fine)/self.num_portfolios) stock_dict = {} for i,ele in enumerate(sortedByfactor1): rank1 = i rank2 = sortedByfactor2.index(ele) rank3 = sortedByfactor3.index(ele) rank4 = sortedByfactor4.index(ele) score = [ceil(rank1/num_stocks), ceil(rank2/num_stocks), ceil(rank3/num_stocks), ceil(rank4/num_stocks)] score = sum(score) stock_dict[ele] = score #self.Log("score" + str(score)) self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True) sorted_symbol = [self.sorted_stock[i][0] for i in range(len(self.sorted_stock))] topFine = sorted_symbol[:self.numberOfSymbolsFine] return [i.Symbol for i in topFine]