| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.146 Tracking Error 0.167 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports
from AlgorithmImports import *
# endregion
import numpy as np
class AdaptableBrownJaguar(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 5, 8) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.AddEquity("SPY", Resolution.Daily)
self.legnth = 5
self.SetWarmUp(timedelta(self.legnth))
self.arrary1 = RollingWindow[float](self.legnth)
self.arrary2 = RollingWindow[float](self.legnth)
def OnData(self, data: Slice):
x = 1.0
y = 2.0
self.arrary1.Add(x)
self.arrary1.Add(y)
if not self.arrary1.IsReady:
return
element2 = np.sum(list(self.arrary1))
self.arrary2.Add(element2)
if not self.arrary2.IsReady:
return