| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 11.838% Drawdown 8.000% Expectancy 0 Net Profit 0.574% Sharpe Ratio 0.474 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 4.24 Beta -230.391 Annual Standard Deviation 0.322 Annual Variance 0.104 Information Ratio 0.418 Tracking Error 0.322 Treynor Ratio -0.001 Total Fees $3.80 |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Data.Market import TradeBar
### <summary>
### Using rolling windows for efficient storage of historical data; which automatically clears after a period of time.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="history and warm up" />
### <meta name="tag" content="history" />
### <meta name="tag" content="warm up" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="rolling windows" />
class RollingWindowAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2018,1,1) #Set Start Date
self.SetEndDate(2018,1,20) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SVXY", Resolution.Minute)
# Creates a Rolling Window indicator to keep the 2 TradeBar
self.window = RollingWindow[TradeBar](2) # For other security types, use QuoteBar
# Creates an indicator and adds to a rolling window when it is updated
self.SMA("SVXY", 225).Updated += self.SmaUpdated
self.smaWin = RollingWindow[IndicatorDataPoint](225)
def SmaUpdated(self, sender, updated):
'''Adds updated values to rolling window'''
self.smaWin.Add(updated)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# Add SVXY TradeBar in rollling window
self.window.Add(data["SVXY"])
# Wait for windows to be ready.
if not (self.window.IsReady and self.smaWin.IsReady): return
currSma = self.smaWin[0] # Current SMA had index zero.
pastSma = self.smaWin[self.smaWin.Count-1] # Oldest SMA has index of window count minus 1.
self.Log("pSMA:{0} -> {1} ... cSMA {2}".format(pastSma.Time, pastSma.Value, currSma.Value))
if not self.Portfolio.Invested and currSma.Value > pastSma.Value:
self.SetHoldings("SVXY", 1)